3. В цилиндрический сосуд налили 2000 см3 воды. Уровень жидкости оказался равным 12 см. Гистограмма просмотров видео «Геометрия В Цилиндрический Сосуд Налили 2000 См3 Воды. Уровень Жидкости Оказался Равным 12 См» в сравнении с последними загруженными видео. хотя рисунка как такового тут не требуется, но рас просишь, пожалуйста Дано: h = 12 cm V = 2000 cm^3 h1 = 9 cm V1.
ЕГЭ профильный уровень. №3 Цилиндр, конус, шар. Задача 1
У второго цилиндра высота в 4 раза больше, а радиус основания в 3 раза меньше, чем у первого. Найдите объём второго цилиндра. Ответ: 36 9 В цилиндрическом сосуде уровень жидкости достигает 45 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй сосуд, диаметр основания которого в 3 раза больше первого? Ответ: 5 10 В цилиндрический сосуд, в котором находится 6 литров воды, опущена деталь. При этом уровень жидкости сосуде поднялся в 1,5 раза. Чему равен объём детали? Ответ: 3 11 В цилиндрический сосуд налили 2100 см3 воды. Уровень воды при этом достигает высоты 20 см. В жидкость полностью погрузили деталь. При этом уровень жидкости в сосуде поднялся на 5 см.
Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Лысенко, С. Рассказать друзьям.
В воду полностью погрузили деталь. При этом уровень жидкости в сосуде поднялся на 10 см. Чему равен объем детали? Ответ выразите в см3. В сосуд, имеющий форму правильной треугольной призмы, налили 1600 см3 воды и полностью в нее погрузили деталь.
При этом уровень жидкости в сосуде поднялся с отметки 25 см до отметки 28 см. Площадь поверхности куба равна 18. Найдите его диагональ. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 9 и 7. Объем параллелепипеда равен 189. Найдите третье ребро параллелепипеда, выходящее из той же вершины. Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 5, а высота — 10. Если каждое ребро куба увеличить на 1, то его площадь поверхности увеличится на 54.
Задания и ответы с 3 варианта 3. Боковые ребра треугольной пирамиды взаимно перпендикулярны, каждое из них равно 3.
Найдите объем пирамиды. Ответ: 4,5 4. В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что сумма выпавших очков равна 16. Результат округлите до сотых. Ответ: 0,03 5. По отзывам покупателей Иван Иванович оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,8. Вероятность того, что этот товар доставят из магазина Б, равна 0,9. Иван Иванович заказал товар сразу в обоих магазинах.
Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар. Ответ: 0,02 10. Смешав 30-процентный и 60-процентный растворы кислоты и добавив 10 кг чистой воды, получили 36-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50- процентного раствора той же кислоты, то получили бы 41- процентный раствор кислоты. Сколько килограммов 30- процентного раствора использовали для получения смеси? Ответ: 60 16. Схема выплат кредита следующая—31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга т. Какой должна быть сумма x, чтобы Алексей выплатил долг четырьмя равными платежами т. Ответ: 2296350 Задания и ответы с 4 варианта 3. Цилиндр и конус имеют общие основание и высоту.
Высота цилиндра равна радиусу основания. Площадь боковой поверхности конуса равна 27 2. Найдите площадь боковой поверхности цилиндра. Ответ: 54 4. Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали ходить. Найдите вероятность того, что часовая стрелка застыла, достигнув отметки 10, но не дойдя до отметки 1 час. Ответ: 0,25 5. Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Статор» по очереди играет с командами «Ротор», «Мотор» и «Стартер». Найдите вероятность того, что «Статор» будет начинать только первую и последнюю игры.
Ответ: 0,125 10. Масса второго сплава больше массы первого на 3 кг. Найдите массу третьего сплава. Ответ дайте в килограммах. Ответ: 9 16. В двух областях есть по 160 рабочих, каждый из которых готов трудиться по 5 часов в сутки на добыче алюминия или никеля.
В цилиндрический сосуд налили 2000 см3 воды. Уровень воды при этом достигает высоты 12 см.
6854 ответа - 61805 раз оказано помощи. Пr^2h=2000. 3. В цилиндрический сосуд налили 2000 см3 воды. Гистограмма просмотров видео «Геометрия В Цилиндрический Сосуд Налили 2000 См3 Воды. Уровень Жидкости Оказался Равным 12 См» в сравнении с последними загруженными видео. В цилиндрический сосуд налили 2100 Формула воды. Уровень жидкости оказался равным 20 см. В воду полностью погрузили деталь. 6854 ответа - 61805 раз оказано помощи. Пr^2h=2000. Начальный объем воды составлял 2000 см3 воды и уровень воды составлял 12 см. Тогда из формулы объема цилиндра следует, что.
В цилиндрический сосуд налили 2000 см³ воды. Уровень воды при этом достигает высоты 12 см. В
В цилиндрический сосуд налили 1000 см3воды. Уровень воды при этом достигает высоты 25 см. В жидкость полностью погрузили деталь. Уровень воды оказался одинаковым 21 см. Когда деталь вытащили из сосуда, уровень воды понизился на 11 см. Чему равен объем детали? Задачи на погружение детали в жидкость В цилиндрический сосуд налили 5000 см3 воды. Опубликовано 4 года назад по предмету Геометрия от Аккаунт удален. в цилиндрический сосуд налили 2000см кубических воды. уровень воды при этом достигает высоты 12 см. в жидкость полностью погрузили деталь. при этом уровень жидкости с сосуде поднялся на 9 см. В цилиндрический сосуд налили 2100 см3 воды.
Последние опубликованные вопросы
- Стереометрия. ЕГЭ. В цилиндрический сосуд налили 2000cм3 воды. Уровень жидкости оказался
- Задание 8. В цилиндрический сосуд налили 2000 см3 воды.
- Редактирование задачи
- В цилиндрический сосуд налили 2000 см3 воды. Уровень жидкости оказался равным 12 см. В воду
- Главная навигация
В цилиндрический сосуд налили 2800 см воды
Ответ на вопрос В цилиндрический сосуд налили 2800 см^3 воды. Уровень жидкости в сосуде поднялся на 12 см. То есть, жидкость заняла дополнительный объем объемом 12 см3 (так как площадь сечения цилиндра при основании не меняется): Vводы = 2000 см3 + 12 см3 Vводы = 2012 см3. Уровень воды оказался одинаковым 21 см. Когда деталь вытащили из сосуда, уровень воды понизился на 11 см. Чему равен объем детали? В цилиндрический сосуд налили 2000 см 3 воды. Уровень жидкости оказался равным 15 см. В воду полностью погрузили деталь.
Редактирование задачи
Example В цилиндрический сосуд налили 2000cм3 воды. ТРЕУГОЛЬНИКИ АВС И МВС ПРАВИЛЬНЫЕ ВС =2корня из3 СМ ПЛОСКОСТЬ МВС ПЕРПЕНДИКУЛЯРНА. Уровень жидкости оказался равным 12 см. Ответы экспертов на вопрос №3187189 В цилиндрический сосуд налили 2000 воды.
Задача №1241
При этом уровень жидкости в сосуде поднялся на 9 см. Чему равен объём детали? Ответ выразите в см3. Показать решение Решение Пусть R — радиус основания цилиндра, а h — уровень воды, налитой в сосуд. Тогда объём налитой воды равен объёму цилиндра с радиусом основания R и высотой h.
Задания и ответы с 3 варианта 3. Боковые ребра треугольной пирамиды взаимно перпендикулярны, каждое из них равно 3. Найдите объем пирамиды. Ответ: 4,5 4. В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что сумма выпавших очков равна 16. Результат округлите до сотых. Ответ: 0,03 5. По отзывам покупателей Иван Иванович оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,8. Вероятность того, что этот товар доставят из магазина Б, равна 0,9. Иван Иванович заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар. Ответ: 0,02 10. Смешав 30-процентный и 60-процентный растворы кислоты и добавив 10 кг чистой воды, получили 36-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50- процентного раствора той же кислоты, то получили бы 41- процентный раствор кислоты. Сколько килограммов 30- процентного раствора использовали для получения смеси? Ответ: 60 16. Схема выплат кредита следующая—31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга т. Какой должна быть сумма x, чтобы Алексей выплатил долг четырьмя равными платежами т. Ответ: 2296350 Задания и ответы с 4 варианта 3. Цилиндр и конус имеют общие основание и высоту. Высота цилиндра равна радиусу основания. Площадь боковой поверхности конуса равна 27 2. Найдите площадь боковой поверхности цилиндра. Ответ: 54 4. Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали ходить. Найдите вероятность того, что часовая стрелка застыла, достигнув отметки 10, но не дойдя до отметки 1 час. Ответ: 0,25 5. Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Статор» по очереди играет с командами «Ротор», «Мотор» и «Стартер». Найдите вероятность того, что «Статор» будет начинать только первую и последнюю игры. Ответ: 0,125 10. Масса второго сплава больше массы первого на 3 кг. Найдите массу третьего сплава. Ответ дайте в килограммах. Ответ: 9 16. В двух областях есть по 160 рабочих, каждый из которых готов трудиться по 5 часов в сутки на добыче алюминия или никеля.
При этом уровень жидкости в сосуде поднялся на 12 см. В сосуд, имеющий форму правильной треугольной призмы, налили 1000 см3 воды и полностью в нее погрузили деталь. При этом уровень жидкости в сосуде поднялся с отметки 20 см до отметки 22 см. Объем куба равен 8. Найдите площадь его поверхности. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 10 и 9. Объем параллелепипеда равен 450. Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 10, а высота — 12. Если каждое ребро куба увеличить на 1, то его площадь поверхности увеличится на 96. Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 6 и 8, и боковым ребром, равным 20. Найдите боковое ребро правильной четырехугольной призмы, если сторона ее основания равна 20, а площадь поверхности равна 1760. Через среднюю линию основания треугольной призмы, площадь боковой поверхности которой равна 96, проведена плоскость, параллельная боковому ребру. Стороны основания правильной четырёхугольной пирамиды равны 36, боковые рёбра равны 82.
При этом уровень жидкости в сосуде поднялся с отметки 25 см до отметки 28 см. Площадь поверхности куба равна 18. Найдите его диагональ. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 9 и 7. Объем параллелепипеда равен 189. Найдите третье ребро параллелепипеда, выходящее из той же вершины. Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 5, а высота — 10. Если каждое ребро куба увеличить на 1, то его площадь поверхности увеличится на 54. Найдите ребро куба. Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 6 и 8, и боковым ребром, равным 10. Найдите боковое ребро правильной четырехугольной призмы, если сторона ее основания равна 10, а площадь поверхности равна 880. Через среднюю линию основания треугольной призмы, площадь боковой поверхности которой равна 24, проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсеченной треугольной призмы.