Главная» Новости» Глобальное замерзание земли 2024. «Оказалось, что температура поверхности выше ожидаемой — +70 градусов Цельсия — однако уже на глубине нескольких миллиметров температура падает до −10 градусов. На некоторой глубине от поверхности Земли располагается пояс постоянной температуры, ниже его происходит увеличение температуры. На глубине 1 м температура грунта колеблется больше, но и зимой ее значение остается положительным, обычно в средней полосе температура составляет 4-10 С, в зависимости от времени года. Закономерный рост температуры с увеличением глубины указывает на существование теплового потока из недр Земли к поверхности.
Поверхность Луны оказалась более горячей, чем считалось раньше
Какова температура Земной коры, на глубине 1-30 км от поверхности? В Кольской скважине глубиной 12 км температура достигает 220° C, а чем ниже — тем горячее. Новости космос Луна оказалась горячее, чем считалось ра. Температура земли на глубине 20 м примерно 10°C, и растет каждые 30м на 1°C. На нее не оказывают влияние климатические условия, и поэтому можно рассчитывать на качественный отбор энергии и зимой и летом. Новости космос Луна оказалась горячее, чем считалось ра.
Температурные показатели планеты Земля
«Оказалось, что температура поверхности выше ожидаемой — +70 градусов Цельсия — однако уже на глубине нескольких миллиметров температура падает до −10 градусов. Новости космос Луна оказалась горячее, чем считалось ра. Геологи предполагали: на глубине 10-15 километров скважина вскроет мантию Земли. Согласно опубликованным 26 апреля результатам научных исследований в журнале Science, оказывается, что температура ядра нашей планеты на 1000 градусов выше. В частности, измерили температуру поверхности Луны, а также на глубине около 10 сантиметров.
Температурные показатели планеты Земля
А меж тем, как пишут учёные, ни одна городская инфраструктура в мире не проектировалась с учётом этого фактора. Поэтому исследователи попытались оценить риски для зданий, мостов и всего прочего, стоящего на понемногу подогреваемой земле. Учёные собрали все имеющиеся данные о температуре грунта под этим районом и сделали компьютерное моделирование, чтобы проследить, как шло "подземное глобальное потепление" с 1951 года когда в Чикаго было достроено метро и как оно, по всей видимости, будет развиваться до 2051 года. Сравнивали температуру земли на глубине 10, 17 и 23 метра. И вот что получилось.
Первый столбик — это то, что было в 1951 году, второй — то, что мы имеем сейчас на момент 2022 года , и третий —прогноз на 2051 год. Правда, между 2022 и 2051 годами не прослеживается никакой разницы: пишут, что сейчас дело идёт к "тепловому насыщению", то есть если раньше почва прогревалась почти на полградуса в год, то сейчас эта скорость составляет 0,14 градуса в год. Зато по сравнению с серединой XX века разница очевидна.
Объемные волны, в свою очередь, разделяются на два вида — продольные и поперечные.
Продольные волны, имеющие большую скорость распространения, первыми фиксируются сейсмоприёмниками, их называют первичными или Р-волнами от англ. Поперечные волны, как известно, обладают важной особенностью — они распространяются только в твёрдой среде. На границах сред с разными свойствами происходит преломление волн, а на границах резких изменений свойств, помимо преломлённых, возникают отраженные и обменные волны. Поперечные волны могут иметь смещение, перпендикулярное плоскости падения SH-волны или смещение, лежащее в плоскости падения SV-волны.
При переходе границы сред с разными свойствами волны SH испытывают обычное преломление, а волны SV, кроме преломлённой и отражённой SV-волн, возбуждают P-волны. Так возникает сложная система сейсмических волн, «просвечивающих» недра планеты. Анализируя закономерности распространения волн можно выявить неоднородности в недрах планеты - если на некоторой глубине фиксируется скачкообразное изменение скоростей распространения сейсмических волн, их преломление и отражение, можно заключить, что на этой глубине проходит граница внутренних оболочек Земли, различающихся по своим физическим свойствам. Сейсмическая модель Земли Изучение путей и скорости распространения в недрах Земли сейсмических волн позволили разработать сейсмическую модель её внутреннего строения.
Сейсмические волны, распространяясь от очага землетрясения в глубь Земли, испытывают наиболее значительные скачкообразные изменения скорости, преломляются и отражаются на сейсмических разделах, расположенных на глубинах 33 км и 2900 км от поверхности см. Эти резкие сейсмические границы позволяют разделить недра планеты на 3 главные внутренние геосферы — земную кору, мантию и ядро. Земная кора от мантии отделяется резкой сейсмической границей, на которой скачкообразно возрастает скорость и продольных, и поперечных волн. Эта граница была открыта в 1909 г.
Средняя глубина границы составляет 33 км нужно заметить, что это весьма приблизительное значение в силу разной мощности в разных геологических структурах ; при этом под континентами глубина раздела Мохоровичича может достигать 75-80 км что фиксируется под молодыми горными сооружениями — Андами, Памиром , под океанами она понижается, достигая минимальной мощности 3-4 км. Ещё более резкая сейсмическая граница, разделяющая мантию и ядро, фиксируется на глубине 2900 км. Исчезновение поперечных волн указывает, что внешняя часть ядра обладает свойствами жидкости. Сейсмическая граница, разделяющая ядро и мантию, была открыта в 1914 г.
Резкие изменения скорости и характера прохождения волн фиксируются на глубинах 670 км и 5150 км. Граница 670 км разделяет мантию на верхнюю мантию 33-670 км и нижнюю мантию 670-2900 км. Граница 5150 км разделяет ядро на внешнее жидкое 2900-5150 км и внутреннее твёрдое 5150-6371 км. Существенные изменения отмечаются и на сейсмическом разделе 410 км, делящим верхнюю мантию на два слоя.
Полученные данные о глобальных сейсмических границах дают основание для рассмотрения современной сейсмической модели глубинного строения Земли. Внешней оболочкой твёрдой Земли является земная кора, ограниченная границей Мохоровичича. Эта относительно маломощная оболочка, толщина которой составляет от 4-5 км под океанами до 75-80 км под континентальными горными сооружениями. В составе знмной коры отчетливо выделяется верхний осадочный слой, состоящий из неметаморфизованных осадочных пород, среди которых могут присутствовать вулканиты, и постилающая его консолидированная, или кристаллическая, кора, образованная метаморфизованными и магматическими интрузивными породами.
Существуют два главных типа земной коры — континентальная и океанская, принципиально различающиеся по строению, составу, происхождению и возрасту. Континентальная кора залегает под континентами и их подводными окраинами, имеет мощность от 35-45 км до 55-80 км, в её разрезе выделяются 3 слоя. Верхний слой, как правило, сложен осадочными породами, включающими небольшое количество слабометаморфизованных и магматических пород.
Температура грунта на разных глубинах и в различные периоды года может быть получена непосредственными измерениями в термоскважинах, которые закладываются в процессе изысканий. Но такой способ требует длительных наблюдений и значительных расходов, что не всегда оправдано. Полученные по одной-двум скважинам данные распространяются на большие площади и протяжения, значительно искажая действительность так, что расчетные данные о температуре грунта во многих случаях оказываются более надежными.
Рассчитав по одной из формул 3. В самых верхних слоях грунта, примерно до 1 м от поверхности, характер температурных колебаний очень сложен. Таблица 3. Знак градиента показан в направлении к дневной поверхности. Чтобы получить расчетную температуру грунта в метровом слое от поверхности, можно поступить следующим образом. Вычислить температуру на глубине 1 м и температуру дневной поверхности грунта, а затем путем интерполяции по этим двум значениям определить температуру на заданной глубине.
Температуру на поверхности грунта t п в холодный период года можно принимать равной температуре воздуха. Температура грунта при несливающейся криолитозоне рассчитывается иначе, чем при сливающейся. В слое сезонного промерзания h п температуру грунта можно вычислить так же, как для слоя сезонного оттаивания сливающейся криолитозоны, то есть в слое h п — 1 м по температурному градиенту табл. В верхнем метровом слое грунта температура определяется по интерполяции между температурой на глубине 1 м и температурой на поверхности. Здесь опубликована динамика изменения зимних 2012-13г. Всё это - на стояке, идущем из скважины.
График - внизу статьи. Дача на границе Новой Москвы и Калужской области зимняя, периодического посещения 2-4 раза в месяц по паре дней. Отмостка и цоколь дома - не утеплены, еще с осени закрыты теплоизолирующими затычками 10см. Теплопотери веранды, куда выходит стояк в январе изменились. Примечание 10. Датчик установлен в заваренной снизу 20мм трубке из ПНД возле стояка, с внешней стороны теплоизоляции стояка, но внутри 110мм трубы.
По оси абсцисс - даты, по оси ординат - температуры. Примечание 1: Температуру воды в скважине, а также - на уровне земли под домом, прямо на стояке без воды тоже буду отслеживать, но только по приезду. Примечание 3: Температура воды "в скважине" меряется тем же датчиком он же - в Примечании 2 , что и "на уровне земли" - он стоит прямо на стояке под теплоизоляцией, вплотную к стояку на уровне земли. Эти два измерения производятся в разные моменты времени. Примечание 4: Температура воды в скважине может быть несколько занижена, так как я не могу искать эту долбаную асимптоту, бесконечно качая воду моя... Как умею - так играю.
Примечание 5: Не актуально, удалил. Примечание 8: Забыл описать, как у меня устроен и утеплен подземный стояк. На ПНД-32 надето два чулка утеплителя в сумме - 2см. Правда, поскольку ПНД-32 шла не по центру 110-ой трубы, а также то, что в своей середине масса обычной пены может долго не застывать, а значит - не превращаться в утеплитель, то в качестве такого дополнительного утепления я сильно сомневаюсь... Наверное, было бы лучше использовать двухкомпонентную пену, о существовании которой я узнал только позже... Примечание 9: Хочу обратить внимание читателей на измерение температуры "На уровне земли" от 12.
Думаю, что это - следствие операции "Засыпка снегом цоколя у стояка", проведенная 31. Примечание 10: С 12 января по 3 февраля произвел дополнительное утепление веранды, куда выходит подземный стояк. Отразилось это и на графиках. И еще: с 4 по 16 февраля впервые за две зимы с воскресенья по пятницу котел не включался для поддержания установленного минимума температуры потому, что она не дошла до этого минимума... Примечание 11: Как и обещал для "порядка" и для завершения годового цикла буду периодически публиковать температуры летом. Но - не в графике, чтобы зиму не "затенять", а здесь, в Примечании-11.
Причем одной из таких зон может быть граница Мохо». Последняя граница Мохо в нашем понимании выступает не только как глобальная в масштабах планеты реологическая граница раздела квазихрупких земная кора и квазипластичных верхняя мантия сред, но и как граница распространения фронта барьерного эффекта аморфизации структуры среды, обеспечивающей реализацию механизма внутриочаговой мобилизации, то есть «первичной миграции» в терминах органического учения мантийных С-Н-N-О-S систем и других элементов включая металлы - компонентов глубинных УВ-систем в верхней мантии и формирование скоплений первичной протонефти. Как заключает И. Гуфельда 2013 в своей статье, «необходимо понять реальную роль зон барьерного эффекта от границы слоя Мохо до более высоких горизонтов в формировании гигантских месторождений. Для нас является реальным горизонтальная диффузия потоки водорода и водородных комплексов на большие расстояния по зонам барьерного эффекта, включая слой Мохо то есть на сотни километров , подпитка которых осуществляется локализованными сверхглубинными потоками струями водорода из мантии». Есть другие, уже мои соображения на механизм вертикальной миграции и перемещения флюидопотоков в мантии Земли, если интересно, можно продолжить.
Луна оказалась горячее, чем считалось ранее, выяснил индийский луноход «Прагьян»
Вертикальная геотермическая зональность определяет глубинную углеводородную зональность в условиях земных недр. На глубинах 6-10 километров, где господствуют высокие температуры, в основном развиты газоконденсатные залежи. Сложные углеводородные соединения нефтей на этих глубинах разрушаются с образованием молекул более простого строения вплоть до метана. Нефтяная залежь преобразовывается в газоконденсатную или нефтегазоконденсатную залежь. В замкнутых резервуарах при этом возникают аномально высокие пластовые давления.
Старший научный сотрудник космического агентства Би Дарукеша в комментарии Press Trust of India выразил удивление по поводу высокой температуры, зафиксированной на поверхности Луны. Это на удивление выше, чем мы ожидали», — сказал он. Читайте также:Индия стала четвертой страной, посадившей на Луну свой аппарат 23 августа посадочной модуль индийской лунной станции «Чандраян-3» успешно совершил мягкую посадку на южном полюсе Луны.
Новое исследование показало, что верхняя часть астеносферы более жидкая, чем считалось ранее. Если говорить просто, тектонические плиты земной коры как бы «скользят» по астеносфере. Новое понимание этого процесса поможет улучшить прогноз тектоники. Открытие было сделано с помощью анализа сейсмических волн, проходящих через недра Земли. Данные были получены со станций по всему миру.
В геологии при расчете геотермического градиента за единицу глубины приняты 100 м. В различных участках и на разных глубинах геотермический градиент непостоянен и определяется составом горных пород, их физическим состоянием и теплопроводностью, плотностью теплового потока, близостью к интрузиям и другими факторами.
Поверхность Луны оказалась более горячей, чем считалось раньше
В англоязычной технической литературе такие системы обозначаются как «GHP» — «geothermal heat pumps», геотермальные тепловые насосы. Климатические характеристики стран Центральной и Северной Европы, которые вместе с США и Канадой являются главными районами использования низкопотенциального тепла Земли, определяют главным образом потребность в отоплении; охлаждение воздуха даже в летний период требуется относительно редко. Поэтому, в отличие от США, тепловые насосы в европейских странах работают в основном в режиме отопления. В США тепловые насосы чаще используются в системах воздушного отопления, совмещенного с вентиляцией, что позволяет как подогревать, так и охлаждать наружный воздух. В европейских странах тепловые насосы обычно применяются в системах водяного отопления. Поскольку эффективность тепловых насосов увеличивается при уменьшении разности температур испарителя и конденсатора, часто для отопления зданий используются системы напольного отопления, в которых циркулирует теплоноситель относительно низкой температуры 35—40 оC. Большинство тепловых насосов в Европе, предназначенных для использования низкопотенциального тепла Земли, оборудовано компрессорами с электрическим приводом.
За последние десять лет количество систем, использующих для тепло- и холодоснабжения зданий низкопотенциальное тепло Земли посредством тепловых насосов , значительно увеличилось. Наибольшее число таких систем используется в США. Швейцария лидирует по величине использования низкопотенциальной тепловой энергии Земли на душу населения. В Москве в микрорайоне Никулино-2 фактически впервые была построена теплонасосная система горячего водоснабжения многоэтажного жилого дома. В качестве низкопотенциального источника тепловой энергии для испарителей тепловых насосов используется тепло грунта поверхностных слоев Земли , а также тепло удаляемого вентиляционного воздуха. Установка для подготовки горячего водоснабжения расположена в подвале здания.
Она включает в себя следующие основные элементы: парокомпрессионные теплонасосные установки ТНУ ; системы сбора низкопотенциальной тепловой энергии грунта и низкопотенциального тепла удаляемого вентиляционного воздуха; циркуляционные насосы, контрольно-измерительную аппаратуру Основным теплообменным элементом системы сбора низкопотенциального тепла грунта являются вертикальные грунтовые теплообменники коаксиального типа, расположенные снаружи по периметру здания. Эти теплообменники представляют собой 8 скважин глубиной от 32 до 35 м каждая, устроенных вблизи дома. Поскольку режим работы тепловых насосов, использующих тепло земли и тепло удаляемого воздуха, постоянный, а потребление горячей воды переменное, система горячего водоснабжения оборудована баками-аккумуляторами. Данные, оценивающие мировой уровень использования низкопотенциальной тепловой энергии Земли посредством тепловых насосов, приведены в таблице. Таблица 1. Мировой уровень использования низкопотенциальной тепловой энергии Земли посредством тепловых насосов Грунт как источник низкопотенциальной тепловой энергии В качестве источника низкопотенциальной тепловой энергии могут использоваться подземные воды с относительно низкой температурой либо грунт поверхностных глубиной до 400 м слоев Земли.
Теплосодержание грунтового массива в общем случае выше. Тепловой режим грунта поверхностных слоев Земли формируется под действием двух основных факторов — падающей на поверхность солнечной радиации и потоком радиогенного тепла из земных недр. Сезонные и суточные изменения интенсивности солнечной радиации и температуры наружного воздуха вызывают колебания температуры верхних слоев грунта. Глубина проникновения суточных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации в зависимости от конкретных почвенно-климатических условий колеблется в пределах от нескольких десятков сантиметров до полутора метров. Глубина проникновения сезонных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации не превышает, как правило, 15—20 м. Температурный режим слоев грунта, расположенных ниже этой глубины «нейтральной зоны» , формируется под воздействием тепловой энергии, поступающей из недр Земли и практически не зависит от сезонных, а тем более суточных изменений параметров наружного климата рис.
График изменения температуры грунта в зависимости от глубины С увеличением глубины температура грунта возрастает в соответствии с геотермическим градиентом примерно 3 градуса С на каждые 100 м. Величина потока радиогенного тепла, поступающего из земных недр, для разных местностей различается. В эксплуатационный период массив грунта, находящийся в пределах зоны теплового влияния регистра труб грунтового теплообменника системы сбора низкопотенциального тепла грунта системы теплосбора , вследствие сезонного изменения параметров наружного климата, а также под воздействием эксплуатационных нагрузок на систему теплосбора, как правило, подвергается многократному замораживанию и оттаиванию. При этом, естественно, происходит изменение агрегатного состояния влаги, заключенной в порах грунта и находящейся в общем случае как в жидкой, так и в твердой и газообразной фазах одновременно. Иначе говоря, грунтовый массив системы теплосбора, независимо от того, в каком состоянии он находится в мерзлом или талом , представляет собой сложную трехфазную полидисперсную гетерогенную систему, скелет которой образован огромным количеством твердых частиц разнообразной формы и величины и может быть как жестким, так и подвижным, в зависимости от того, прочно ли связаны между собой частицы или же они отделены друг от друга веществом в подвижной фазе. Промежутки между твердыми частицами могут быть заполнены минерализованной влагой, газом, паром и льдом или тем и другим одновременно.
Моделирование процессов тепломассопереноса, формирующих тепловой режим такой многокомпонентной системы, представляет собой чрезвычайно сложную задачу, поскольку требует учета и математического описания разнообразных механизмов их осуществления: теплопроводности в отдельной частице, теплопередачи от одной частицы к другой при их контакте, молекулярной теплопроводности в среде, заполняющей промежутки между частицами, конвекции пара и влаги, содержащихся в поровом пространстве, и многих других. Особо следует остановиться на влиянии влажности грунтового массива и миграции влаги в его поровом пространстве на тепловые процессы, определяющие характеристики грунта как источника низкопотенциальной тепловой энергии. В капилярно-пористых системах, каковой является грунтовый массив системы теплосбора, наличие влаги в поровом пространстве оказывает заметное влияние на процесс распространения тепла. Корректный учет этого влияния на сегодняшний день сопряжен со значительными трудностями, которые прежде всего связаны с отсутствием четких представлений о характере распределения твердой, жидкой и газообразной фаз влаги в той или иной структуре системы. До сих пор не выяснены природа сил связи влаги с частицами скелета, зависимость форм связи влаги с материалом на различных стадиях увлажнения, механизм перемещения влаги в поровом пространстве. При наличии в толще грунтового массива температурного градиента молекулы пара перемещаются к местам, имеющим пониженный температурный потенциал, но в то же время под действием гравитационных сил возникает противоположно направленный поток влаги в жидкой фазе.
Кроме этого, на температурный режим верхних слоев грунта оказывает влияние влага атмосферных осадков, а также грунтовые воды. Основные факторы, под воздействием которых формируются температурный режим грунтового массива систем сбора низкопотенциального тепла грунта, приведены на рис. Факторы, под воздействием которых формируются температурный режим грунта Виды систем использования низкопотенциальной тепловой энергии Земли Грунтовые теплообменники связывают теплонасосное оборудование с грунтовым массивом. Кроме «извлечения» тепла Земли, грунтовые теплообменники могут использоваться и для накопления тепла или холода в грунтовом массиве. В общем случае можно выделить два вида систем использования низкопотенциальной тепловой энергии Земли : открытые системы: в качестве источника низкопотенциальной тепловой энергии используются грунтовые воды, подводимые непосредственно к тепловым насосам; замкнутые системы: теплообменники расположены в грунтовом массиве; при циркуляции по ним теплоносителя с пониженной относительно грунта температурой происходит «отбор» тепловой энергии от грунта и перенос ее к испарителю теплового насоса или, при использовании теплоносителя с повышенной относительно грунта температурой, его охлаждение. Основная часть открытых систем — скважины, позволяющие извлекать грунтовые воды из водоносных слоев грунта и возвращать воду обратно в те же водоносные слои.
Обычно для этого устраиваются парные скважины. Схема такой системы приведена на рис. Схема открытой системы использования низкопотенциальной тепловой энергии грунтовых вод Достоинством открытых систем является возможность получения большого количества тепловой энергии при относительно низких затратах. Однако скважины требуют обслуживания. Кроме этого, использование таких систем возможно не во всех местностях. Главные требования к грунту и грунтовым водам таковы: достаточная водопроницаемость грунта, позволяющая пополняться запасам воды; хороший химический состав грунтовых вод например, низкое железосодержание , позволяющий избежать проблем, связанных с образованием отло- жение на стенках труб и коррозией.
Открытые системы чаще используются для тепло- или холодоснабжения крупных зданий. Самая большая в мире геотермальная теплонасосная система использует в качестве источника низкопотенциальной тепловой энергии грунтовые воды. Эта система расположена в США в г. Луисвилль Louisville , штат Кентукки. Система используется для тепло- и холодоснабжения гостиничноофисного комплекса; ее мощность составляет примерно 10 МВт. Иногда к системам, использующим тепло Земли, относят и системы использования низкопотенциального тепла открытых водоемов, естественных и искусственных.
Такой подход принят, в частности, в США. Системы, использующие низкопотенциальное тепло водоемов, относятся к открытым, как и системы, использующие низкопотенциальное тепло грунтовых вод. Замкнутые системы, в свою очередь, делятся на горизонтальные и вертикальные. Горизонтальный грунтовой теплообменник в англоязычной литературе используются также термины «ground heat collector» и «horizontal loop» устраивает- ся, как правило, рядом с домом на небольшой глубине но ниже уровня промерзания грунта в зимнее время. Использование горизонтальных грунтовых теплообменников ограничено размерами имеющейся площадки. В странах Западной и Центральной Европы горизонтальные грунтовые теплообменники обычно представляют собой отдельные трубы, положенные относительно плотно и соединенные между собой последовательно или параллельно рис.
Для экономии площади участка были разработаны усовершенствованные типы теплообменников, например, теплообменники в форме спирали, расположенной горизонтально или вертикально рис 4д, 4е. Такая форма теплообменников распространена в США. Виды горизонтальных грунтовых теплообменников а — теплообменник из последовательно соединенных труб; б — теплообменник из параллельно соединенных труб; в — горизонтальный коллектор, уложенный в траншее; г — теплообменник в форме петли; д — теплообменник в форме спирали, расположенной горизонтально так называемый «slinky» коллектор; е — теплообменник в форме спирали, расположенной вертикально Если система с горизонтальными теплообменниками используется только для получения тепла, ее нормальное функционирование возможно только при условии достаточных теплопоступлений с поверхности земли за счет солнечной радиации. По этой причине поверхность выше теплообменников должна быть подвержена воздействию солнечных лучей. Вертикальные грунтовые теплообменники в англоязычной литературе принято обозначение «BHE» — «borehole heat exchanger» позволяют использовать низкопотенциальную тепловую энергию грунтового массива, лежащего ниже «нейтральной зоны» 10—20 м от уровня земли. Системы с вертикальными грунтовыми теплообменниками не требуют участков большой площади и не зависят от интенсивности солнечной радиации, падающей на поверхность.
Вертикальные грунтовые теплообменники эффективно работают практически во всех видах геологических сред, за исключением грунтов с низкой теплопро- водностью, например, сухого песка или сухого гравия. Системы с вертикальными грунтовыми теплообменниками получили очень широкое распространение. Схема отопления и горячего водоснабжения одноквартирного жилого дома посредством теплонасосной установки с вертикальным грунтовым теплообменником приведена на рис. Схема отопления и горячего водоснабжения одноквартирного жилого дома посредством теплонасосной установки с вертикальным грунтовым теплообменником Теплоноситель циркулирует по трубам чаще всего полиэтиленовым или полипропиленовым , уложенным в вертикальных скважинах глубиной от 50 до 200 м. Обычно используется два типа вертикальных грунтовых теплообменников рис. В одной скважине располагаются одна или две реже три пары таких труб.
Преимуществом такой схемы является относительно низкая стоимость изготовления. Двойные U-образные теплообменники — наиболее широко используемый в Европе тип вертикальных грунтовых теплообменников. Коаксиальный концентрический теплообменник. Простейший коаксиальный теплообменник представляет собой две трубы различного диаметра. Труба меньшего диаметра располагается внутри другой трубы. Коаксиальные теплообменники могут быть и более сложных конфигураций.
Сечение различных типов вертикальных грунтовых теплообменников Для увеличения эффективности теплообменников пространство между стенками скважины и трубами заполняется специальными теплопроводящими материалами. Системы с вертикальными грунтовыми теплообменниками могут использоваться для тепло- и холодоснабжения зданий различных размеров.
Нижегородский ученый объяснил изменения температуры на Луне Ранее ряд СМИ в очередной раз поставил под сомнение высадку американцев на спутнике Земли. Температура поверхности Луны меняется в больших пределах, сообщил в беседе с корреспондентом ИА «Время Н» лектор Нижегородского планетария им.
Сеть термометрических скважин обустроена под жилыми и социальными зданиями в Салехарде. В настоящее время здесь апробируется и тестируется первая версия методики автоматизированного геотехнического мониторинга объектов капитального строительства, разработанная учёными Научного центра изучения Арктики в сотрудничестве с Институтом математики и механики Уральского отделения РАН. Окончательную версию разработчики планируют представить через три года.
Новая технология позволит специалистам следить за параметрами многолетней мерзлоты в режиме онлайн и прогнозировать возможные процессы растепления грунтов и снижения их несущей способности в будущем.
Рисунок 16. Фазовая диаграмма состояний железа при высоких давлениях. Крестиками отмечены экспериментальные данные Р. Бёлера Boehler, 1993 , экстраполяция кривой на большие давления проведена по закону Клапейрона-Клаузиуса. Отани, А. Рингвуда и В.
Хайбберсона 1984, 1990 , при давлениях до 1,4 Мбар — по данным Р. Бёлера, при более высоких давлениях — находилась по уравнению Клайперона-Клаузиуса, согласованному с экспериментами Р. Бёлера рис. Однако при больших давлениях, судя по данным Бёлера, эта депрессия сокращается до пределов точности экспериментов. Рисунок 17. Крестиками показаны экспериментальные данные: до 500 кбар — данные Е. Хайбберсона 1984, 1990 , на интервале давлений 700-1400 кбар — данные Р.
Бёлера 1993 , далее экстраполяция по закону Клапейрона-Клаузиуса; пунктиром показана температура плавления железа. Очевидно, что скачки температуры на границах фазовых переходов первого рода возникают в мантии только тогда, когда её вещество в процессе конвективного массообмена пересекает такую границу в статичной мантии любые скачки температуры сравнительно быстро сглаживаются за счёт обычной теплопроводности вещества.
Пластовая температура
«Оказалось, что температура поверхности выше ожидаемой — +70 градусов Цельсия — однако уже на глубине нескольких миллиметров температура падает до −10 градусов. Предполагается, что геотермический градиент уменьшается начиная с глубины 20–30 км: на глубине 100 км предположительные температуры около 1300–1500°C, на глубине 400 км — 1600°C, в ядре Земли (глубины более 6000 км) — 4000–5000°C. Известно, что ядро Земли имеет чрезвычайно высокую температуру, для этого есть свои причины.
Пластовая температура
Для нового эксперимента использовалась новая рентгеновская техника, которая позволяет намного быстрее производить расчеты, чем раньше. В обычных лабораторных условиях временной интервал процесса сжатия железа, который смог бы показать является ли его структура по-прежнему твердой или же железо начинает плавиться, был возможен только в течение нескольких секунд. Новый же метод ученых основан на дифракции, которая образуется тогда, когда рентгеновские лучи или любая другая форма света сталкивается с препятствием и огибает его. Эксперименты показали, что при давлении в 2,2 миллиона раз выше, чем обычное давление на уровне моря точка плавления железа составляет 4800 градусов Цельсия. Опираясь на результаты полученных исследований, ученые пришли к выводу, что температура между внешним и внутренним ядром Земли при давлении в 3,3 миллиона атмосфер в 3,3 миллиона раз выше, чем атмосферное давление на уровне моря составляет 6000 градусов, плюс-минус 500 градусов.
Благодаря разнице температуры между слоем мантии и внутренним ядром, которая составляет порядка 2700 градусов Цельсия, а также за счет движения мантии и вращения планеты и создается магнитное поле. Для нового эксперимента использовалась новая рентгеновская техника, которая позволяет намного быстрее производить расчеты, чем раньше. В обычных лабораторных условиях временной интервал процесса сжатия железа, который смог бы показать является ли его структура по-прежнему твердой или же железо начинает плавиться, был возможен только в течение нескольких секунд. Новый же метод ученых основан на дифракции, которая образуется тогда, когда рентгеновские лучи или любая другая форма света сталкивается с препятствием и огибает его. Эксперименты показали, что при давлении в 2,2 миллиона раз выше, чем обычное давление на уровне моря точка плавления железа составляет 4800 градусов Цельсия.
В целом он возрастает с глубиной. В складчатых областях он больше, чем на платформах, а геотермическая ступень наоборот — меньше. Изучение температурного режима нефтяных и газовых залежей имеет важное практическое значение. От температуры и давления зависят плотность, вязкость нефтей, их газонасыщенность, растворимость газов и нефтяных компонентов и др.
На картах изотерм антиклинальные складки часто выделяются локальными максимумами температуры. Такие аномалии вызваны тем, что в пределах поднятий развит преимущественно песчаный разрез, обладающий повышенной теплопроводностью.
В Лондоне, в отличие от Берлина или Киева, не бывает затяжных морозов и снежных зим, лужайки всегда зеленые, а тропические растения чувствуют себя как дома. О том, что Гольфстрим и Amoc в целом ослабевают, ученые неоднократно предупреждали в последние годы. Однако оценки главных мировых экспертов, собранных в межправительственную группу по изменению климата, указывали на то, что в текущем 21 веке полного коллапса не будет. Датские ученые проверили их модели и пришли к выводу, что прежние прогнозы были основаны на неполных данных, поскольку полноценные замеры течений начались только в 2004 году, и не учитывали самых свежих данных о рекордном темпе нагревания планеты. Фото: BBC По их данным, все гораздо хуже, циркуляция в Атлантике ослабевает быстрее прогнозов и остановится уже в этом веке. В их исследовании, опубликованном в Nature Communications, говорится, что система атлантических течений подошла к переломному моменту, за которым она придет к новой норме.
Норма эта не понравится европейцам ни на севере, ни на юге континента. Климат на северо-западе Европы станет резко континентальным, с суровыми зимами и засушливым летом. А запертые на юге массы теплого и влажного воздуха повлияют на муссоны и интенсивность осадков в тропиках. Замедление циркуляции Amoc в Атлантическом океане ученые связывают с глобальным потеплением. Оно ускоряет таяние льдов в Арктике, пресная вода уменьшает соленость северных морей, чем снижает интенсивность погружения охлажденных поверхностных вод и их обратную подповерхностную циркуляцию на юг. Со своей стороны, общее потепление на планете замедляет сам процесс арктического охлаждения тропических вод, а связанное с ним ослабление ветров уменьшает скорость теплых атлантических течений в обратном направлении. Некоторые признаки этой аномалии ученые отмечают последние три месяца. Мировой океан нагревается, но одна его часть выделяется особо.
Горячий океан «Температура воды в Северной Атлантике беспрецедентна и вызывает серьезную озабоченность. Она намного выше, чем предсказывали наши модели. Это скажется и на экосистемах, и на рыболовстве, и на погоде», — сказал глава отдела климатических исследований Всемирной метеорологической организации Майкл Спэрроу. Самое удивительное, что Атлантический океан нагрелся, не дожидаясь тихоокеанского Эль-Ниньо.
Распределение температуры в Земле
Это постоянство температуры вызвало ученых предположить о возможном искусственном происхождении пещер, хотя окончательные выводы еще рано делать. Отчет, подготовленный в Институте физики Земли, гласил: за миллиарды лет своего существования Кольский щит остыл, температура на глубине 15 км не превышает 150°С. А геофизики подготовили примерный разрез недр Кольского полуострова. Температура Земли на глубине 3 тыс. километров намного более неоднородна, чем считалось ранее. Сравнивали температуру земли на глубине 10, 17 и 23 метра. это скорость изменения температуры по мере увеличения глубины недр Земли. Смотрите видео онлайн «Проверим температуру под землей на глубине 50 сантиметров?» на канале «Инженер Андрей» в хорошем качестве и бесплатно, опубликованное 18 декабря 2022 года в 16:09, длительностью 00:03:29, на видеохостинге RUTUBE.
Зависимость температуры от глубины. Температура внутри Земли
В некоторых местах пробурить скважину в 50 метров задача не из легких. Требуются усиленные обсадные трубы, укрепление шахты и т. Следует, что вода не будет подниматься с температурой 22 градуса. Максимум, при прохождении по трубам в теплом доме опуститься до 15 градусов. Таким образом нужен мощный насос, который будет в десятки раз больше прогонять воды с 600 метровой глубины для получения хоть какого-то эффекта. Здесь закладываем не сопоставимый с экономией расход электроэнергии. На глубине около 15 метров, температура земли составляет примерно 10 градусов по Цельсию Следует логичный вывод, что уже далеко не бесплатным отопление дома энергией земли может позволить только человек далеко не бедный, которому экономия на отоплении особо и не нужна.
Конечно, можно сказать, что такая технология будет служить сотни лет и детям и внукам, но все это фантазии.
Благодаря разнице температуры между слоем мантии и внутренним ядром, которая составляет порядка 2700 градусов Цельсия, а также за счет движения мантии и вращения планеты и создается магнитное поле. Для нового эксперимента использовалась новая рентгеновская техника, которая позволяет намного быстрее производить расчеты, чем раньше. В обычных лабораторных условиях временной интервал процесса сжатия железа, который смог бы показать является ли его структура по-прежнему твердой или же железо начинает плавиться, был возможен только в течение нескольких секунд. Новый же метод ученых основан на дифракции, которая образуется тогда, когда рентгеновские лучи или любая другая форма света сталкивается с препятствием и огибает его. Эксперименты показали, что при давлении в 2,2 миллиона раз выше, чем обычное давление на уровне моря точка плавления железа составляет 4800 градусов Цельсия.
Однако в некоторых случаях температура может падать с увеличением глубины, особенно у поверхности, явление, известное как обратный или отрицательный геотермический градиент. В геологии при расчете геотермического градиента за единицу глубины приняты 100 м.
Это первый подобный профиль для Южного полюса Луны. Наблюдения продолжаются», — говорится в заявлении ISRO. Как объяснил сотрудник агентства, при погружении на два-три сантиметра внутрь Земли колебания температуры составляют два-три градуса по Цельсию, тогда как на Луне этот показатель достигает около 50 градусов.