В результате данный белый карлик спонтанно взорвется или превратится в нейтронную звезду-пульсар. Мы открыли белый карлик, которому удалось пережить этот взрыв, что доказывает, что подобные вспышки могут происходить при участии только одной вырожденной звезды, — пишут Стефан Веннес (Stefan Vennes). звёзды главной последовательности: оранжевые и жёлтые карлики, желто-белые и белые звёзды, бело-голубые гиганты, голубые сверхгиганты и гипергиганты. Звезда является белым карликом, сверхплотным ядром погибшего светила.
Астрономы нашли необычный белый карлик из разных половинок
Обломки происходят от небольших тел, которые были сброшены планетами во время их орбитального сдвига. Поскольку белый карлик — крошечная мишень, маленькие тела не врезаются в звезду, а разрываются на части гравитацией, образуя диски из камней, которые превращаются в пыль, когда они вращаются очень близко к белому карлику. Примерно через 7 миллиардов лет Солнце превратится в белого карлика. Земля будет либо поглощена красным гигантским Солнцем, либо просто основательно поджарена. При взгляде со стороны единственным намеком на то, что бледно-голубая точка когда-то вращалась вокруг этого белого карлика, будут несколько характерных спектральных линий — своего рода брызги крови от давно умершей планеты. Но это еще не конец. Пять или, может быть, шесть, если Земле повезет планет выживут, чтобы лицезреть Солнце в виде белого карлика. Проходящая мимо звезда вызовет динамическую нестабильность среди планет Ничто не длится вечно даже холодный ноябрьский дождь. После того, как Солнце превратится в белого карлика, его планетная система станет почти в два раза больше, чем сейчас.
Не с точки зрения количества планет, конечно прощайте, внутренние каменистые планеты , а с точки зрения размеров орбит выживших планет. Орбита Нептуна вырастет с 30 примерно до 55 астрономических единиц, обозначив внешний край планет. Вновь установившейся стабильности будут теперь угрожать лишь другие звезды. Звезды проводят много времени рядом друг с другом только в младенчестве. В новорожденных скоплениях звезды часто проходят относительно близко друг к другу. Точное число зависит от размера и плотности кластера рождения. Иногда звезды проходят так близко, что их гравитация влияет на то, что находится на орбите вокруг другой звезды. Например, проходящая мимо звезда может дестабилизировать самые отдаленные части планетообразующего диска другой звезды.
А в некоторых случаях проходящая мимо звезда может даже украсть планету с очень широкой орбитой. Это возможное происхождение гипотетической планеты номер 9. Одна из моделей предполагает, что орбиты очень удаленных объектов в поясе Койпера формировались на ранних этапах развития Солнечной системы, когда звезда находилась на расстоянии от нескольких сотен до тысячи астрономических единиц от Солнца. Это модель вызывает споры. Это типичное расстояние для встречи, которая могла бы случится со звездой, подобной Солнцу. Как только родовые скопления рассеиваются, звезды обычно остаются далеко друг от друга. Это происходит потому, что космос действительно очень большой. Учитывая плотность звезд в окрестностях Солнца и то, как быстро они движутся, мы можем рассчитать время, необходимое звезде, чтобы пройти на определенном расстоянии от Солнца.
В среднем другая звезда проходит в пределах 10000 астрономических единиц от Солнца каждые 20 миллионов лет или около того, в пределах 1000 астрономических единиц каждые миллиард лет и в пределах 100 астрономических единиц каждые 100 миллиардов лет. Позвольте мне рассказать про фантастическое исследование 2020 года за авторством Джона Цинка, Константина Батыгина и Фреда Адамса — оно действительно углубило наше понимание далекого будущего Солнечной системы. Ученые смоделировали десять вариантов орбитальной эволюции Солнечной системы в течение следующего триллиона лет. Большой взрыв произошел всего лишь 14 миллиардов лет назад, поэтому расчеты Цинка и его коллег охватывают период, примерно в 70 раз превышающий нынешний возраст Вселенной. Десять созданных моделей отличаются друг от друга, главным образом, с точки зрения прохождения звезд вблизи Солнца и планет. Планетарная система подвергается сильному воздействию лишь в том случае, когда звезда проходит очень близко — в пределах, превышающих размер самой большой планетарной орбиты в три-пять раз. Поскольку Нептун находится на расстоянии 30 астрономических единиц от Солнца, звезде необходимо было бы пройти в пределах примерно 100 астрономических единиц, чтобы оказать достаточное влияние на Солнечную систему.
Таким образом, звезда-компаньон с малой массой всегда может заполнять свою критическую полость Роша и передавать материал белому карлику.
Последний достигнет предела Чандрасекара через 1,5 миллиона лет и может взорваться как сверхновая типа Ia. Полостью Роша называется область вокруг звезды, при заполнении которой начинает происходить перетекание вещества к другой звезде.
В своей работе учёные представили открытие новой четверной системы, подобной Сириусу, на расстоянии 32 парсека, состоящей из кристаллизующегося белого карлика, компаньона ранее известной тройной HD 190412. Для сравнения, 1 парсек равен 3,26 светового года или примерно в 206 265 раз больше расстояния от Земли до Солнца.
Это свойство объясняется сильным атмосферным поглощением оптического красного и инфракрасного излучения из-за неупругого столкновения молекул газов в фотосфере. Он лишь немного моложе WD J2147-4035 с возрастом остывания около 9 миллиардов лет и загрязнен обломками, которые по химическому составу сходны с континентальной корой Земли. Эти обломки принадлежат древней планетной системе, которая пережила эволюцию родительской звезды сначала в красного гиганта, а потом в белого карлика.
Ученые нашли превращающуюся в алмаз звезду на расстоянии 104 световых лет от Земли
Белые карлики излучают мало света, но в системе HD 190412 есть и другие звезды, которые еще не превратились в белых карликов. Белый карлик является частью двойной звездной системы, и его огромная гравитация вытягивает плазму из более крупной звезды-компаньона. Британские астрономы впервые увидели, как белый карлик в глубоком космосе меняет яркость за короткий промежуток времени — звезда «включается» и «выключается», реагируя на потоки материи, поступающие из внешнего пространства.
Аномальная звезда с огромной скоростью пересекает нашу галактику
В этом случае белый карлик начинает отбирать водород у звезды, вокруг которой он вращается по спирали. Реакция заканчивается гигантским термоядерным взрывом. Впрочем, простого взрыва звезды недостаточно для достижения такой скорости. Астрономы считают, что сверхскоростные звезды запускаются в полет особым видом сверхновых типа Ia — динамически управляемыми сверхновыми с двойным вырождением и двойной детонацией D6. Фото: NASA В сверхновых D6 две белые карликовые звезды вращаются по спирали друг с другом, одна из которых лишает другую оставшихся слоев гелия с ее поверхности.
Когда сверхновая происходит в так называемой чистой среде, где отсутствует околозвёздный материал, эти радиоволны отсутствуют. Учёные никогда ранее не обнаруживали радиоизлучения сверхновой типа Ia. Как бы там ни было, исследователи всё еще находятся в неведении относительно того, как возникают сверхновые типа Ia. Преобладающая теория заключается в том, что сверхновые возникают, когда белый карлик высасывает слишком много вещества от звезды-компаньона любого типа.
В его фотосфере обнаружили присутствие таких химических элементов, как натрий, литий, калий и, возможно, углерод, что делает звезду самым старым белым карликом, загрязненным металлами.
Его возраст достигает около 10,7 миллиарда лет, при этом 10,2 миллиарда лет из этого срока было потрачено на остывание звезды. В то же время высокое содержание лития и калия не похоже ни на один космический объект в Солнечной системе, поэтому происхождение обломков пока остается неизвестным.
Пульсары считаются мертвыми звездами. Они израсходовали запас топлива и сбросили внешние слои. Оставшееся ядро под действием силы тяжести коллапсирует в сверхплотный объект. Пульсары крайне быстро вращаются; быстрое вращение и мощное магнитное поле генерируют электромагнитное излучение.
Астрофизики открыли двуликую звезду — это белый карлик с необычной химической структурой
Звезда-предшественник белого карлика перед своей гибелью была обязана превратиться в так называемый асимптотический красный гигант, раздувшийся примерно до размеров земной орбиты. Впервые за 80 лет двойная звезда Тау вспыхнет на небе, это явление смогут увидеть россияне. Найденная звезда — белый карлик.
Астрофизики открыли двуликую звезду — это белый карлик с необычной химической структурой
Звезда, которая заканчивает свою жизнь в одной из этих планетарных туманностей, оставляет после себя ядро, известное как белый карлик. Белый карлик является частью двойной звездной системы, и его огромная гравитация вытягивает плазму из более крупной звезды-компаньона. Таким образом, звезда-компаньон с малой массой всегда может заполнять свою критическую полость Роша и передавать материал белому карлику. Мертвая звезда оказалась белым карликом, бледным напоминанием некогда существовавшего красного гиганта, выработавшего весь свой топливный ресурс и пережившего коллапс. Умирающая звезда-гигант кормит белый карлик своим веществом, сбрасывая свой внешний водородный слой.
Астрономы впервые увидели «включение и выключение» белого карлика
То есть время уже подходит. Есть и другой признак того, что T CrB готовится к взрыву, говорит Кук. От большинства других новых звёзд T CrB отличает именно известная и относительно постоянная периодичность. Именно это делает взрыв звезды таким особенным.
Или с такой периодичностью, что мы понятия не имеем, когда это произойдёт снова", — объясняет Мередит Макгрегор с кафедры физики и астрономии Университета Джонса Хопкинса. По словам профессора астрономии Университета Висконсин-Мэдисон Ричарда Таунсенда, периодичность вспышек новой звезды может составлять от года до миллионов лет. Из-за чего происходит вспышка?
Белый карлик T CrB существует в бинарной системе, то есть это одна из двух звёзд, вращающихся вокруг друг друга точнее — вокруг общего центра масс. Вторая — красный гигант. Белые карлики обладают массой, сопоставимой с солнечной, но диаметр их примерно в 100 раз меньше, что делает их сравнимыми по размеру с Землёй.
Большая масса и небольшой размер вместе дают высокую плотность и очень сильную гравитацию.
Кроме того, открытие подтверждает, что магнитное поле белого карлика генерируется внутренним "динамо" подобно тому, как жидкое ядро Земли генерирует свое магнитное поле. Только у этих звезд магнитное поле гораздо более мощное, чем у нашей планеты. Открытие J1912-4410 стало важным шагом вперед в изучении этой сферы". Считается, что пульсары представляют собой нейтронные звезды - тип "мертвых" звезд. По сути, это то, что остается от звезды после ее гибели. Пульсар может быть меньше первоначального размера звезды в 8-30 раз. Он образуется, когда звезда полностью сжигает свое водородное топливо. Она сбрасывает свой внешний материал, а ее ядро коллапсирует под действием гравитации.
Можно подумать, что из-за того, что белый карлик мал, он не продержится очень долго, потому что в нём меньше энергии. Оказывается, все совсем наоборот. Если бы это была обычная звезда, она бы давно была уничтожена. Но представьте, что вы берете солнце и сжимаете его до размера Земли, масса остается та же, но упакована она гораздо плотнее. Таким образом, баскетбольный мяч из вещества этой звезды весил бы столько же, сколько 35 голубых китов. Экстремальная плотность белого карлика защищает его от гравитационного натиска сверхмассивной черной дыры. Орбита белого карлика проходит рядом с черной дырой каждые девять часов. И каждый раз, когда он приближается к черной дыре, часть его материи вытягивается. Они играют друг с другом в межзвездное перетягивание каната. Чёрная дыра больше, так что она победит. Однако белый карлик очень плотный, поэтому он будет оставаться на её орбите в течение миллиардов лет. Когда астрономы впервые обнаружили белых карликов, они подумали, что подобные объекты не должны существовать. Как могло что-то иметь такую экстремальную плотность и не рухнуть под собственным весом? Квантовая механика, наука об атомных и субатомных частицах, помогла найти ответ. Мы привыкли к правилам физики здесь, в макроскопическом мире. Но когда вы приближаетесь к субатомному миру, все становится очень странным. Здесь у нас есть электрон, одна из легчайших элементарных частиц во Вселенной, и именно эти маленькие электроны выполняют работу по поддержке целой звезды. Атомы начинают сжиматься, теряя внутренние энергетические связи. Увеличившаяся плотность объединяет электроны в новую субстанцию — вырожденный электронный газ. В таком состоянии электроны плотно взаимодействуют друг с другом, противодействуя силам гравитационного сжатия. Образуется так называемое голое ядро, которое не имеет внешней оболочки. Эти вырожденные электроны останавливают коллапс белых карликов, но они придают звездам странные качества.
В новой работе, опубликованной в журнале Science, группа описывает белого карлика, который имеет все признаки остатка сверхновой типа Iax. Белый карлик LP 40-365 был впервые открыт в 2013 году. Звезда привлекла внимание, так как путешествовала очень быстро. Ученые обнаружили, что она вращалась быстрее, чем ожидалось, и имела смешанный состав, по которому можно судить, что когда-то у нее была звезда-компаньон.
НАСА показало «глаз» белого карлика
Обсудить Находится небесное тело на расстоянии 130 световых лет от нашей планеты. При этом его радиус 2140 км, что делает его очень похожим в этом плане на Луну 1737 км , передаёт Nature. Но в то же время масса белого карлика примерно в 1,3 раза больше массы нашей звезды — Солнца.
Исследователи подробно проанализировали изменение орбитального периода QR And, используя кривые блеска, полученные спутником для исследования транзитных экзопланет TESS, и фотометрические наблюдения, собранные Американской ассоциацией наблюдателей за переменными звездами AAVSO. Ученые подсчитали, что масса вторичного компонента-донора составляет около 0,5 массы Солнца, тогда как масса белого карлика составляет около 1,2 массы Солнца. Масса и угловой момент, уносимые звездным ветром с аккреционного диска, задерживают расширение орбиты QR And.
Астрономы уже имеют предварительные данные, полученные в период последней вспышки в 1985 году, однако в то время не были изучены ранние стадии взрыва, поэтому ученые не продвинулись в понимании этого явления дальше теоретических гипотез. Периодические взрывы белого карлика происходят в газовой атмосфере его гигантского соседа. Выброшенное взрывом вещество устремляется с очень высокой скоростью в водородную атмосферу и приводит к вторичной вспышке излучения в рентгеновском и радиодиапазоне. В начале наблюдения взрыва с борта космической станции Swift NASA было обнаружено очень мощное рентгеновское излучение. Несколько недель оно оставалось на прежнем уровне, затем начало ослабевать.
Спектральный анализ показал, что газ остывает. Излучение нестабильно, периодичность колебаний составляет примерно 35 с. Одним из возможных объяснений этого явления может быть неустойчивость ядерных реакций, происходящих внутри белого карлика».
Весь процесс занимает квадриллион лет. В научной статье, опубликованной в arXiv, авторы исследования рассказывают об обнаружении одного белого карлика на ранних стадиях кристаллизации. Ей около 4,2 миллиарда лет.
Аномальное слияние: как в Млечном Пути образовался сверхмассивный белый карлик
«Эта звезда уникальна, потому что у нее есть все ключевые характеристики белого карлика. это обгоревшие остатки звезд, которые когда-то были похожи на наше солнце. Художественная иллюстрация, отображающая процесс слияния двух белых карликов, в результате которого образовался новый тип Reindl/CC BY SA 4.0. Солнце и другие не слишком крупные звезды заканчивают жизнь, превращаясь в белых карликов. звёзды главной последовательности: оранжевые и жёлтые карлики, желто-белые и белые звёзды, бело-голубые гиганты, голубые сверхгиганты и гипергиганты.