Новости станок на котором закрепляется ствол артиллерийского орудия

Механизмы наводки (laying mechanisms) орудия служат для придания стволу требуемого направления относительно станка. Рельсосверлильный станок РСС предназначен для сверления и одновременного упрочнения отверстий под стыковые болты и рельсовые соединители, а также снятия фасок с двух сторон отверстия в рельсах типа Р5 Смотрите видео онлайн «Рельсосверлильный станок РСС» на. станок, на котором устанавливается и закрепляется ствол артиллерийского орудия (лафет). 36-фунтовая (173мм) русская опытная пушка образца 1786 года с подъёмным винтом для изменения угла возвышения ствола орудия на корабельном откидном станке. вид огнестрельного оружия для поражения живой силы, техники и сооружений противника с больших расстояний.

Станок где укрепляется ствол артиллерийского орудия

Тюфяки – небольшие артиллерийские орудия, предназначенные для стрельбы металлическим и каменным дробом по живой силе противника. вид огнестрельного оружия для поражения живой силы, техники и сооружений противника с больших расстояний. Здесь мы собрали для вас все WOW Guru Станок, на котором закрепляется ствол артиллерийского орудия ответы. станок, на котором устанавливается и закрепляется ствол артиллерийского орудия. Ответы на кроссворды. →. Станок, на котором устанавливается и закрепляется ствол артиллерийского орудия, 5 букв. Ответ на вопрос «Основание артиллерийского орудия, на котором крепится ствол «, 5 (пять) букв: лафет.

Лафет как боевой станок

Люлька устанавливается и закрепляется наметками в цапфенных гнездах верхнего станка. Специалисты-ремонтники возвращают в бой бронетехнику, автотранспорт, системы залпового огня, буксируемые артиллерийские орудия. Для повышения качества за счет получения ствола без весового прогиба в пушке заготовку ствола устанавливают в горизонтально-расточном станке, снабженном вертлюжной бабкой с двумя четырехкулачковыми патронами и кольцевым люнетом, выверяют заготовку. Верхний станок является основанием для качающейся части пушки и представляет собой стальную отливку, закрепленную на цапфах нижнего станка. Как куются пушки? Радиальная ковка на больших кузнечных заводах. Первые артиллерийские орудия состояли из ствола и деревянного станка, часть из них имела затвор.

Скульптура России. XVI век. Из истории создания памятника. Царь-пушка.

Изобретение относится к военной технике, в частности к устройствам для досылания выстрелов в канал ствола артиллерийского орудия. ЛАФЕТ в Словаре иностранных выражений: [нем. lafette] станок, на котором устанавливается и закрепляется ствол артиллерийского орудия с затвором в который служит для придания стволу нужного. 36-фунтовая (173мм) русская опытная пушка образца 1786 года с подъёмным винтом для изменения угла возвышения ствола орудия на корабельном откидном станке. станок, на котором устанавливается и закрепляется ствол артиллерийского орудия (лафет). Все права защищены © ООО «МИЦ «Известия», 2024. Царь-пушка – это артиллерийское орудие периода Русского Царства (между 1547 и 1721 годами).

Ответы на кроссворд дня № 21927 из "Одноклассников"

Как делали пушки. Медное литье, медленная формовка и колокола Это страница с WOW Guru Станок, на котором закрепляется ствол артиллерийского орудия ответами, которые могут помочь вам завершить игру.
Станок, на котором закрепляется ствол артиллерийского орудия 5 букв Часть артиллерийского орудия в виде рамы вытянутой формы, на которой крепится ствол и колеса для передвижения по местности.
Краткая история вооружения • Arzamas станок, на котором устанавливается и закрепляется ствол артиллерийского орудия.

Станок, на котором закрепляется ствол артиллерийского орудия WOW Guru

Значение слова ДВУНОГА-ЛАФЕТ в Иллюстрированной энциклопедии оружия Гаубица — артиллерийское орудие сухопутных войск, предназначенное для стрельбы на дальние расстояния вне прямой видимости цели.
Что такое гаубица и почему она до сих пор на вооружении. Объясняем простыми словами Ствол орудия будет расположен параллельно диаметру буссоли, на одном конце которого стоит цифра «30», а на другом «О» (рис. 246).
АРТИЛЛЕРИЯ | Энциклопедия Кругосвет 25. Станок, на котором устанавливается и закрепляется ствол артиллерийского орудия. 26. Основное средство уничтожения и морального подавления противника в бою, стрельба из различных видов оружия на поражение цели.

Способ изготовления ствола артиллерийского орудия

В походном положении ствол оттягивают назад и закрепляют на станинах. ПОВОРОТНАЯ РАМА, нижняя часть лафета для орудий больших калибров; облегчает боковую (горизонтальную) наводку орудия и накатывание лафета после выстрела, для чего она ставится на катки и имее. Позволяет быстро направить орудие в разных плоскостях, так как счет идет на секунды", – рассказал Евгений Лыжин, контролер. + 152-мм пушка-гаубица Д-20. Руководство службы.

Что такое гаубица и почему она до сих пор на вооружении. Объясняем простыми словами

Известны способы изготовления орудийных стволов как длинномерных толстостенных труб повышенной точности изготовления, включающие глубокое сверление и растачивания канала например, по технологии, описанной в кн. Уткин, Ю. Кижняев, С. Плужников и др. Уткина - Л. Изготовление таких труб включает установку и выверку заготовки на горизонтально-расточном станке, снабженном вертлюжной бабкой с двумя четырехкулачковыми патронами и кольцевым люнетом, растачивание канала и последующее точение наружной поверхности по возможности соосно отверстию. Недостатком известных способов является большая непрямолинейность ствола, установленного в пушке, обусловленная его весовым прогибом, и неконцентричность канала и наружной поверхности ствола - разностенность. Наиболее близким по технической сущности и достигаемому результату к предложенному способу является принятый за прототип способ механической обработки прецизионных длинномерных труб, включающий вращение заготовки, центрируемой относительно оси станка в нескольких поперечных сечениях по предварительно выполненным опорным пояскам с постоянной по окружности толщиной стенки, расстояние между которыми определяют в зависимости от исходной непрямолинейности заготовки, причем опорные пояски выполняют равномерно по длине заготовки патент РФ N 2055701, М. Недостатком известного, принятого за прототип, способа является то, что изготовленный таким образом ствол в орудии деформируется под действием собственного веса, приобретая при этом значительную непрямолинейность. Задачей разработки предложенного способа изготовления является получение технического результата - повышение качества, выражающееся в получении ствола без весового прогиба в орудии за счет создания исходной непрямолинейности ствола, компенсирующей его весовой прогиб.

При осуществлении варианта способа, при котором заготовку устанавливают в вертлюжном люнете казенной частью, предварительно измеряют биение наружной поверхности заготовки, находят положение наибольшего отклонения наружной поверхности заготовки от прямолинейности и при совмещении оси канала заготовки в дульном сечении с центром задней стойки и креплении заготовки в кольцевом люнете устанавливают заготовку в станке этим отклонением вниз. Если заготовку устанавливают в вертлюжном люнете дульной частью, то в одном из вариантов осуществления способа предварительно измеряют биение наружной поверхности заготовки, находят положение наибольшего отклонения наружной поверхности заготовки от прямолинейности и при совмещении оси канала заготовки в дульном сечении с осью стебля расточной головки и креплении заготовки в патроне вертлюжной бабки у дульного торца устанавливают заготовку в станке этим отклонением вверх. Один из вариантов предполагает, что заготовку растачивают в направлении от казенной части к дульной. В варианте осуществления способа растачивают заготовки, биение наружной поверхности которых не превышает четырех значений весовой непрямолинейности ствола в орудии. Может выполняться вариант способа, при котором заготовку устанавливают в вертлюжном люнете казенной частью, предварительно измеряют отклонение оси канала от прямолинейности, находят положение наибольшего отклонения и при совмещении оси канала заготовки в дульном сечении с центром задней стойки и креплении заготовки в кольцевом люнете устанавливают заготовку в станке этим отклонением вниз. Может выполняться вариант способа, при котором заготовку устанавливают в вертлюжном люнете дульной частью, предварительно измеряют отклонение оси канала от прямолинейности, находят положение наибольшего отклонения и при совмещении оси канала заготовки в дульном сечении с осью стебля расточной головки и креплении заготовки в патроне вертлюжной бабки у дульного торца устанавливают заготовку в станке этим отклонением вверх. Сущность предложенного способа правки поясняется следующим образом. Орудийный ствол устанавливается консольно в люльке пушки, при этом весовой прогиб ствола может быть близок по величине или превышать технологический допуск на отклонение оси канала от прямолинейности, измеряемое в горизонтальной плоскости. Если заготовку ствола перед растачиванием упруго деформировать так, чтобы ее кривизна соответствовала кривизне установленного в пушке ствола под действием собственного веса, зафиксировать такое положение и расточить ствол в заневоленном состоянии, то после снятия со станка канал ствола будет зеркально отображать прогиб под действием весового прогиба, а при установке в пушку ось канала будет прямолинейной с точностью до технологических погрешностей изготовления, величина которых соответствует погрешностям изготовления по действующей технологии, принятой за прототип.

Однако расточенный канал заготовки ствола из-за кривизны оказывается несоосным наружной поверхности, что может привести к появлению повышенной разностенности. Для исключения этого наружную поверхность ствольной заготовки точат, установив заготовку в центрах и роликовых люнетах токарного станка с учетом полученной кривизны оси канала. Формулы, по которым в зависимости от величины отклонения оси канала от прямолинейности определяют положение на заготовке опорных поясков, установлены при анализе деформации системы и компьютерном моделировании технологического процесса. Содержание и количественные характеристики вариантов осуществления способа предложены на основе анализа результатов моделирования процесса изготовления. Установка ствольной заготовки для растачивания казенной частью в два патрона вертлюжной приводной бабки консольно с последующей выверкой и фиксацией заготовки люнетом в дульной части позволяет в наибольшей степени имитировать весовой прогиб готового ствола, однако в этом случае повышается нагрузка на подшипники вертлюжной бабки станка, что может привести к их ускоренному износу. Установка заготовки для растачивания казенной частью в люнет и дульной частью в расположенный ближе к средней части заготовки патрон вертлюжной бабки станка с последующей фиксацией заготовки патроном вертлюжной бабки, расположенным у дульного торца, не повышает нагрузку на подшипники вертлюжной бабки по сравнению с известной технологией, однако нужный результат достигается только в определенном интервале параметров способа, если один из патронов вертлюжной бабки расположен у дульного торца заготовки, а другой на расстоянии от него, равном 15...

На рис. Наиболее удачной связью ствола с лафетом является упругий лафет. Первым в мире орудием с упругим лафетом была 2,5-дюймовая пушка системы В. Барановского 1872.

У орудия с упругим лафетом имеются две части: подвижная откатные части и неподвижная.

Развитие дальнобойной артиллерии, приведшее к удлинению ствола орудия, и появление быстро движущихся целей, вследствие чего необходимо было увеличить скорость наводки, настойчиво потребовали уменьшить усилие на маховике подъемного механизма. Для облегчения работы на подъемном механизме орудия стали снабжать уравновешивающими механизмами. В современных артиллерийских орудиях широко применяются уравновешивающие механизмы тянущего и толкающего типа рис. Уравновешивающие механизмы: а — толкающий; б — тянущий. Уравновешивающий механизм толкающего типа см. Иногда орудия имеют два цилиндра с одной пружиной, которые располагаются под люлькой, также впереди цапф. Такая конструкция уменьшает диапазон углов возвышения, так как расположение под люлькой ограничивает длину цилиндра. Пружина, находящаяся между двумя цилиндрами, подпирает переднюю часть люльки и тем самым уменьшает влияние веса дульной части ствола на подъемный механизм. Кроме того, уравновешивающий механизм толкающего типа, действуя на люльку снизу, уменьшает давление цапф на цапфенные гнезда верхнего станка, а значит и трение при наводке.

Основным недостатком такого механизма является его уязвимость, кроме того, этот механизм расположен почти вертикально, вследствие чего увеличивается общая высота орудия. Схема уравновешивающего механизма тянущего типа следующая см. К станку орудия прикреплена коробка уравновешивающего механизма так, что она может вращаться в вертикальной плоскости. В коробке находится сжатая между дном коробки и шайбой пружина. Конец тяги, соединенной с шайбой, при помощи цепи закреплен на люльке позади цапф. Вследствие такого расположения деталей пружина через шток тянет люльку, создавая тем самым момент, который и уравновешивает перевес качающейся части. Горизонтальное или почти горизонтальное расположение цилиндров в механизмах тянущего типа представляет большие удобства. Основным же недостатком данных механизмов является большое трение в цапфах при работе подъемным механизмом. В некоторых новейших орудиях применяются гидропневматические уравновешивающие механизмы. Идея их устройства такая же, как и идея устройства уравновешивающего механизма толкающего типа, но пружина заменена сильно сжатым до 50 атмосфер воздухом, заключенным в цилиндре механизма.

Чтобы сжатый воздух не просочился наружу и давление не упало, нижняя часть цилиндра уравновешивающего механизма заполняется специальной жидкостью, которая принимает на себя давление воздуха и в силу своей несжимаемости передает его на нижний цилиндр. Основным достоинством этого уравновешивающего механизма является его компактность. Основным недостатком является то, что его работа в большой степени зависит от изменения температуры окружающего воздуха. Отдача В момент выстрела под действием пороховых газов снаряд с большой скоростью вылетает из канала ствола вперед, а ствол начинает двигаться назад. Если бы ствол не был закреплен на лафете, он полетел бы на некоторое расстояние в направлении, обратном движению снаряда. Для того, чтобы ясно представить себе явление отката, проделайте простой опыт. Возьмите обыкновенную стеклянную пробирку, налейте в нее немного воды и заткните пробкой. Пробирку нагревайте до тех пор, пока не закипит вода. Образующиеся водяные пары выбьют пробку, которая полетит в одну сторону, а пробирка в тот же момент полетит в противоположную. Сила отдачи, толкающая ствол орудия назад, очень велика; она достигает примерно 112 тонн у 76-миллиметровой пушки и превосходит 400 тонн у 152-миллиметровой гаубицы-пушки.

Старые орудия, стволы которых были жестко закреплены на лафете, после каждого выстрела откатывались назад. Приходилось тратить много времени и много сил, чтобы возвратить орудие на место и восстановить наводку. Скорострельность таких пушек была, конечно, небольшой. Особенно трудно было накатывать тяжелые орудия. Поэтому артиллеристы всегда стремились затормозить откат орудия и облегчить накатывание его на прежнее место. Сначала они применяли для этого простые приспособления в виде клиньев, которые подкладывались под колеса орудия. При откате орудие накатывается на эти клинья, а затем скатывается по наклонной плоскости и занимает первоначальное положение. Позднее в дополнение к клиньям к лафету орудия присоединяли пружинный тормоз, который поглощал часть энергии отката. Этот тормоз еще не составлял одного целого с лафетом. Понятно, что и клинья и тормоз отката значительно сокращали время подготовки орудия к следующему выстрелу.

Но все же оно оставалось значительным, так как наводка орудия сильно сбивалась при откате и накате. Чтобы затормозить откат всего орудия, нужно было построить прочную платформу. Это можно было сделать для крепостных орудий или для тяжелых осадных орудий, но это лишило бы подвижности полевую артиллерию. Все это поставило перед конструкторами задачу изобрести такой лафет, который при выстреле оставался бы на месте. В результате плодотворной работы выдающемуся русскому изобретателю В. Барановскому удалось сконструировать скорострельную горную пушку, у которой при выстреле лафет оставался на месте, а ствол сначала откатывался, а затем накатывался на прежнее место. Такого результата В. Барановский достиг, применив гидравлический тормоз отката и пружинный накатник. Его идеи, заложенные в основу проектирования скорострельных артиллерийских орудий, были использованы не только в России, но и за границей. Откат ствола современного орудия тормозится при помощи гидравлического тормоза, а накат его на свое место производится пружинным, пневматическим или гидропневматическим накатником.

Тормоз отката рис. Тормоз отката. Цилиндр заполнен жидкостью — веретенным маслом или глицериновой жидкостью. Он может закрепляться на стволе при помощи специальных обойм. При выстреле ствол орудия под действием пороховых газов откатывается назад, вместе с ним откатывается цилиндр тормоза отката. Шток, закрепленный в крышке люльки, остается на месте. Поэтому при откате ствола с цилиндром поршень штока сильно давит на жидкость, которая под этим давлением начинает пробрызгиваться через отверстия, имеющиеся в поршне. Пройдя эти отверстия, жидкость пойдет по двум направлениям: в заднюю часть цилиндра через кольцевой зазор между регулирующим кольцом и веретеном и в переднюю полость штока через отверстия в модераторе, сдвигая клапан модератора. Незначительное количество жидкости проходит в переднюю полость штока по канавкам переменной глубины на внутренней поверхности штока. По мере отката величина кольцевого зазора между веретеном и регулирующим кольцом меняется, так как веретено имеет переменное сечение.

На преодоление сопротивления жидкости пробрызгиванию и расходуется главным образом энергия откатных частей. У некоторых орудий тормоз устроен несколько иначе: цилиндр тормоза закреплен неподвижно в люльке, а шток тормоза при помощи специальной детали, называемой бородой, прикрепляется к казеннику. При откате люлька, а следовательно, и цилиндр остаются неподвижными, ствол же, откатываясь, тянет за собой шток тормоза. Несмотря на некоторое различие в конструктивном отношении, принцип действия этого тормоза остается прежним. В некоторых описаниях пушек вы можете встретить в разделе «Противооткатные устройства» название «тормоз отката и наката». Это означает, что в данном тормозе имеется специальное приспособление, которое принимает участие в торможении наката. Чаще всего встречаются тормозы наката веретенного типа. При накате часть жидкости, попавшая в замодераторное пространство, давит на клапан модератора, сдвигает его и закрывает отверстия в модераторе, вследствие чего жидкость пробрызгивается только через канавки переменной глубины, находящиеся на внутренней поверхности штока. Сопротивление жидкости пробрызгиванию через канавки переменной глубины и создает необходимое торможение наката. Плавность наката достигается тем, что в конце наката канавки переменного сечения сходят на нет.

В результате работы, происходящей в тормозе отката во время стрельбы, температура жидкости в цилиндре увеличивается. При каждом выстреле она увеличивается примерно на один градус. Как вы знаете, при нагревании тела расширяются, следовательно, расширится и жидкость, которая заполняет внутреннюю полость цилиндра тормоза отката. В результате этого ствол орудия не сможет возвратиться в свое первоначальное положение, или, как говорят артиллеристы, произойдет «недокат». При большом же недокате сильно уменьшится длина той части цилиндра, в которой поршень штока тормозит откат, что может вызвать резкий удар деталей в конце отката и поломку противооткатных устройств. Для того, чтобы уменьшить объем жидкости, достаточно выпустить часть жидкости из цилиндра, и тогда можно было бы продолжать стрельбу. Но в этом случае при охлаждении противооткатных устройств пришлось бы доливать выпущенную жидкость в цилиндр. Между тем в бою не всегда можно вовремя отбавить жидкость и добавить ее. Необходимо специальное приспособление, которое могло бы автоматически регулировать количество жидкости в рабочем пространстве цилиндра тормоза отката. В современных орудиях с успехом применяются приспособления, называемые компенсаторами.

Компенсатор отделяется от рабочего объема цилиндра тормоза тонкой перегородкой — диафрагмой — с очень узкими отверстиями и крышкой компенсатора с одним отверстием, в которое вварена изогнутая трубка. Компенсатор частично заполняется жидкостью. Во время стрельбы, при расширении жидкости в цилиндре, часть жидкости через отверстия в диафрагме перетекает из цилиндра в пространство между диафрагмой и крышкой компенсатора и дальше по трубке в корпус компенсатора, сжимая находящийся над жидкостью воздух. При перерывах в стрельбе жидкость в цилиндре тормоза охлаждается и объем ее уменьшается. Сжатый в компенсаторе воздух, стремясь расшириться до первоначального объема, вытесняет жидкость в цилиндр тормоза отката. Таким образом, тормоз отката представляет собой довольно сложную тепловую машину, в которой энергия механическая переходит в тепловую. После того, как энергия отдачи целиком израсходуется на преодоление силы сопротивления жидкости пробрызгиванию, начинает действовать накатник, задача которого возвратить откатившиеся части в первоначальное положение. В современных орудиях можно встретить накатники двух типов: пружинный и гидропневматический. Пружинный накатник действует так. В момент отката ствола пружины накатника сжимаются, принимая частично на себя силу отдачи.

Сжатие пружины при откате равно длине отката. После остановки ствола в заднем крайнем положении пружины, разжимаясь, возвращают откатившиеся части в первоначальное положение, в результате чего происходит накат. Такие накатники применяются преимущественно в орудиях малого калибра и редко в артиллерии среднего калибра. Гидропневматический, или, как его называют, воздушный, накатник устроен следующим образом. В обоймах ствола закреплены сообщающиеся между собой цилиндры рис. Свободная часть верхнего цилиндра заполнена воздухом, сжатым до 25—40 атмосфер. В нижнем, или рабочем, цилиндре помещен шток с поршнем, причем в поршне нет никаких отверстий. При выстреле ствол орудия с цилиндрами откатывается назад. Поршень перегоняет жидкость из рабочего цилиндра в воздушный. Так как жидкость практически несжимаема, то сжимается воздух в верхнем цилиндре до 80—100 атмосфер.

Когда откат окончен, сильно сжатый воздух выгоняет жидкость из верхнего цилиндра в нижний; жидкость передает давление к поршню; последний, оставаясь на месте, заставляет двигаться цилиндры, а вместе с ними и ствол. В результате ствол возвращается на место. Таким образом, всю работу по возвращению ствола на место выполняет воздух. Жидкость в накатнике необходима лишь для герметизации, иначе воздух сможет проникнуть через сальники и выйти наружу. В современных орудиях, помимо противооткатных устройств, уменьшают скорость отката еще другим способом: напору газов, давящих на затвор назад, противопоставляют силу, которая толкает ствол вперед. Для этого на дульную часть ствола навинчивают дульный тормоз. Чем прикрываются артиллеристы от вражеских пуль Если вы посмотрите на любое современное орудие, то увидите, что оно имеет стальной щит. За щитом может укрыться от пуль и осколков весь орудийный расчет. Но не всегда орудия имели такие щиты. Когда существовали орудия, которые при каждом выстреле откатывались назад, щиты не были нужны: все равно артиллеристы должны были во время отката отбегать от орудия.

Не имело смысла увеличивать вес орудии что было неизбежно при установке щитов , так как расчет мот укрыться за щитом лишь на короткое время. Но как только на вооружении русской армии появились новые скорострельные пушки с противооткатными устройствами, вопрос о щите встал совершенно по-иному. Орудийному расчету уже не было надобности отбегать при выстреле от орудия, так как откатывался только ствол, а лафет оставался на месте. При таких условиях щит мот принести только пользу. Однако эта мысль, как и многие другие гениальные предложения русских артиллеристов, встретила ожесточенные возражения со стороны многочисленных консерваторов и рутинеров, которые имелись в старой русской армии. Среди высших кругов русских офицеров нашлось немало таких, которые считали, что артиллеристам позорно прятаться за щитами в то время, когда пехота наступает без всяких щитов. И только во время русско-японской войны, благодаря энергии и настойчивости выдающихся русских артиллеристов, была доказана необходимость щитов. Первыми орудийными щитами были щиты, поставленные на орудиях батареи талантливого русского артиллериста подполковника Кугиак. Эти щиты были изготовлены из котельного железа толщиной почти в 3 миллиметра. Японские винтовочные пули не могли пробить их даже с дальности в 700 шагов.

Блестящие действия батареи подполковника Кугиак со всей убедительностью доказали огромную пользу щитов. К концу русско-японской войны по примеру, поданному русскими артиллеристами, все государства снабдили свои полевые орудия щитами. Щитовое прикрытие современных полевых орудий обычно состоит из двух щитов: неподвижного и подвижного. Неподвижный щит в свою очередь состоит из средней части, верхнего и нижнего откидных щитов. Средняя часть щита при помощи специальных кронштейнов прикрепляется к верхнему станку и имеет вырез, через который проходит ствол с люлькой. Величина выреза должна быть такой, чтобы был обеспечен горизонтальный и вертикальный обстрел, допускаемый механизмами наводки. Если в целях маскировки необходимо уменьшить высоту орудия, верхний щит опускается. Нижний щит опускается лишь в том случае, когда орудие находится в боевом положении. Подвижная часть щита укрепляется на качающейся части орудия и служит для укрытия расчета от пуль и осколков, которые могут попасть в вырез в неподвижном щите. Толщина щитов возросла с 3 миллиметров до 10.

Кроме основного щитового прикрытия, на современных орудиях имеется целый ряд щитков, предназначенных для защиты хрупких деталей и механизмов. Для уменьшения пробиваемости щитов применяют так называемые экранированные щиты. Сущность экранирования состоит в том, что вместо одного щита используют два, поставленных на расстоянии 20—25 миллиметров друг от друга и жестко скрепленных распорками. После пробивания первого щита пуля или осколок теряет часть своей энергии, изменяет направление своего полета и деформируется. Следовательно, условия для пробивания второго щита ухудшаются. В настоящее время щитовое прикрытие применяется также и в зенитных пушках. Это нововведение вызвано тем, что, как показал опыт Великой Отечественной войны, зенитные пушки могут успешно применяться для борьбы с танками противника. Конструкция щитового прикрытия в значительной степени зависит от назначения, типа и калибра орудия. Подрессоривание Если вы посмотрите на старые орудия с жестким лафетом, то увидите, что колеса этих орудий надевались прямо на ось, которая жестко соединялась со станком. В этом случае оси должны быть очень прочными, так как при перевозке орудия резкие толчки передаются непосредственно на ось, а от оси передаются на остальные части орудия.

С появлением механической тяги скорости перевозки артиллерийских орудий увеличились. При таких скоростях перевозки толчки усиливаются и, следовательно, артиллерийские орудия могли бы быстро прийти в негодность. Для уменьшения вредного действия толчков и ударов на механизмы и приборы орудия в современных артиллерийских системах используют специальные механизмы, которые называются подрессориванием. Для подрессоривания в основном применяют рессоры пружины и резиновые буферы. Если произвести выстрел из подрессоренного орудия, то верхний станок со стволом будет колебаться на рессорах. Следовательно, будет нарушено основное требование, предъявляемое к орудию, — устойчивость. Это привело к необходимости использовать особый механизм, который автоматически связывает ось орудия с нижним станком при переходе в походное положение. Вначале в качестве упругого элемента использовались пластинчатые рессоры и цилиндрические пружины. Позднее было использовано свойство упругого сопротивления цилиндрического стержня. Работа такого механизма подрессоривания заключается в следующем.

Один конец цилиндрического стержня жестко закреплен в лафете рис. Схема стержневого подрессоривания.

Боеприпасы несмертельного действия. Для проведения специальных полицейских операций с привлечением бронетанковой техники в различных странах ведутся разработки боеприпасов несмертельного действия. Действие таких боеприпасов не должно приводить к смерти либо серьезным увечьям людей.

В частности, израильской компанией «Ай-Эм-Ай» созданы специальные выстрелы для танковых пушек калибров 105 и 120 мм. Снаряды этих выстрелов при срабатывании создают очень сильный звук, что может вызвать нарушение звука у людей, находящихся недалеко от танка, а также оказать на них устрашающее воздействие. Взрыватель — устройство для приведения в действие боеприпаса в соответствии с его назначением. Безопасность взрывателя способность не срабатывать преждевременно обеспечивается предохранителями. По принципу действия взрыватели различают на дистанционные, контактные, неконтактные, комбинированного действия например, дистанционно-ударные.

Дистанционный взрыватель — взрыватель, который срабатывает на траектории по истечении заданного времени без воздействия цели. Бывают пиротехнические с пороховым дистанционным составом , механические с часовом механизмом; наиболее распространены , электрические и комбинированные. Применяются в осколочных, кассетных, дымовых артиллерийских снарядах. Применение дистанционных взрывателей при стрельбе по воздушным и наземным целям значительно увеличивает осколочное действие снарядов. Контактный взрыватель — взрыватель, который срабатывает при соприкосновении с целью.

Различают ударные механические, пьезоэлектрические, конденсаторные и т. Бывают контактные взрыватели мгновенного осколочного действия или с 2—3 установками на мгновенное, инерционное фугасного и замедленное действие. Под временем действия понимают время от момента встречи снаряда с преградой до его разрыва. Для взрывателей мгновенного действия оно не превышает 0,001 с, инерционного действия — в пределах 0,001—0,01 с, замедленного действия — 0,01—0,1 с. Неконтактный взрыватель — взрыватель, который срабатывает в результате взаимодействия с целью без соприкосновения боеприпаса с ней на расстоянии, наивыгоднейшем для поражения цели.

Для приведения в действие используются различные физические поля — акустические, электромагнитные, магнитные и др. Взрыватели, воспринимающие энергию, излучаемую целью, называют взрывателями пассивного действия; взрыватели, излучающие энергию и реагирующие на нее после отражения от цели, называют взрывателями активного действия. По расположению в боеприпасе взрыватели различают на головные, донные, боковые, универсального расположения. У последних детонатор расположен в донной части, а элемент, воспринимающий реакцию преграды, — в головной части снаряда. По способу возбуждения детонационной цепи взрыватели делят на механические и электрические.

В механических взрывателях возбуждение передается перемещением ударника, вызывающего срабатывание капсюля, в электрических — электрической энергией. В состав взрывателя входят следующие обязательные элементы: капсюль-воспламенитель, капсюль-детонатор и детонатор. Капсюль-воспламенитель лат. Детонатор состоит из небольшого заряда ВВ 10—30 г , чувствительного к импульсу капсюля-детонатора. Он усиливает действие последнего и обеспечивает детонацию основного разрывного заряда снаряда.

В ряде конструкций между капсюлем-воспламенителем и капсюлем-детонатором вводится замедлитель из дымного пороха. В таких взрывателях луч огня может проходить в зависимости от установки непосредственно от капсюля-воспламенителя к капсюлю-детонатору или через замедлитель, время горения которого определяет время замедления взрыва снаряда. Снаряды, предназначенные для выброса на траектории зажигательных, осветительных, агитационных и других элементов или материалов, комплектуются дистанционными трубками, по устройству напоминающими дистанционные взрыватели. Отличие от взрывателей состоит в том, что огневая цепь у них не имеет ни капсюля-детонатора, ни детонатора, поскольку в таких снарядах нет разрывного заряда. Огневая цепь дистанционной трубки заканчивается пороховой петардой, которая воспламеняет вышибной заряд из дымного пороха, выбрасывающий содержимое корпуса снаряда.

Метательный заряд — строго определенное весовое количество пороха, применяемое для каждого выстрела. Бывают постоянные и переменные метательные заряды. Постоянные метательные заряды используются в орудиях, заряжаемых артиллерийским выстрелом унитарного заряжания. Здесь гильза закрывается самим снарядом, который соединен с ней путем обжима или закатки дульца. Не допускаются никакие изменения этих зарядов.

Переменные метательные заряды применяются при раздельном заряжании артиллерийские выстрелы картузного и раздельно-гильзового заряжания. Они состоят из основного пакета и дополнительных пучков пороха. Во время стрельбы можно изменять вес метательного заряда, удаляя нужное количество пучков пороха. Благодаря этому можно изменять начальную скорость, характер траектории и дальность полета снаряда. Кроме того, при стрельбе уменьшенными зарядами лучше сохраняется орудие и сокращается расход пороха.

Масса и марка пороха определяются баллистическими расчетами из условия наивыгоднейшего использования энергии заряда для достижения требуемой начальной скорости при заданном давлении пороховых газов. В состав заряда, кроме бездымного пороха, включаются некоторые вспомогательные элементы: воспламенитель из дымного пороха , нормальная крышка обтюратор , усиленная крышка для герметизации заряда , пламегаситель для уменьшения дульного пламени , размеднитель для удаления частиц меди со стенок канала ствола от ведущего пояска , флегматизатор для уменьшения разгара ствола. Гильза нем. Представляет собой тонкостенный стакан, предназначенный для помещения метательного заряда, вспомогательных элементов к нему пламегаситель и др. По наружному очертанию гильза соответствует зарядной каморе того орудия, для которого предназначена.

Гильза состоит из дульца, конического ската, корпуса, фланца, дна, капсюльной втулки, очка под капсюль-воспламенитель. Чтобы облегчить экстракцию гильзы после выстрела, ее корпус делается слегка коническим. В заряженном состоянии гильза своим фланцем упирается в казенный срез трубы ствола. После выстрела выбрасыватель затвора захватывает гильзу за фланец и извлекает из ствола. Гильзы для автоматических орудий вместо фланца или закраины имеют кольцевую выточку для зацепа выбрасывателя.

В некоторых безоткатных орудиях гильза имеет перфорированные отверстия, через которые пороховые газы поступают в камору орудия и далее через затвор в атмосферу. От высыпания и попадания влаги заряд предохраняют обкладка, закрывающая перфорированные отверстия в гильзе, и разрывная диафрагма. Обычно гильзы изготовляются из латуни или малоуглеродистой стали. Металлические гильзы имеют ряд недостатков при их использовании внутри боевых машин, оснащенных артиллерийскими орудиями. Стреляные гильзы загромождают боевые отделения.

Кроме того, извлекаемые из ствола стреляные гильзы заполнены пороховыми газами, что сильно увеличивает загазованность боевых отделений и, несмотря на вентиляционную систему, снижает работоспособность экипажа. Для мощных танковых пушек с высоким давлением пороховых газов приходится делать металлические гильзы массивными, чтобы облегчить их экстракцию после выстрела, что приводит к дополнительным эксплуатационным неудобствам. Для устранения этих недостатков были созданы боеприпасы с частично сгорающей гильзой, использование которых возможно без каких-либо изменений в существующих орудиях. Частично сгорающая гильза, выполненная в основном из сгорающего материала, имеет укороченную металлическую донную часть высотой 50—60 мм, обеспечивающую обтюрацию пороховых газов. Такие гильзы легки по весу, сокращают проникновение вредных дымов в боевое отделение машин и менее громоздки по сравнению с обычными металлическими гильзами.

Материалом для сгорающих гильз служат картон и мелкие древесные опилки, пропитанные нитроцеллюлозой, крафтбумага, магний, мелкозернистый порох, связующие вещества. Средства воспламенения — устройства для возбуждения горения зарядов из порохов, ракетного топлива и пиротехнических составов. К средствам воспламенения относятся патронные капсюли-воспламенители накольного или ударного действия артиллерийских мин , капсюльные втулки и ударные воспламенительные трубки артиллерийских выстрелов, электровоспламенители и электрокапсюли, огнепроводный шнур, пиропатроны и воспламенители реактивных артиллерийских снарядов, ракет и ракетных двигателей. По способу приведения в действие средства воспламенения подразделяются на ударные, электрические и гальваноударные. Ударные средства воспламенения приводятся в действие ударом бойка ударного механизма и имеют вид капсюльных втулок в выстрелах раздельно-гильзового заряжания и ударных трубок в выстрелах картузного заряжания.

Электрические средства воспламенения действуют от электрического импульса, который обеспечивается подачей напряжения 20 В. Гальваноударные средства воспламенения сочетают в одной конструкции электрический и ударный способы действия. Они более надежны, позволяют сократить время на производство выстрела, исключить случаи задержек, что особенно важно при стрельбе из танков с ходу. ПУШКИ Пушка — артиллерийское орудие для настильной стрельбы по наземным надводным целям или для стрельбы по воздушным целям. Калибр современных пушек 20—210 мм, масса снарядов 0,1—130 кг, дальность прямого выстрела по танкам свыше 2000 м.

Максимальная дальность стрельбы пушек: 76—85-мм — 13—15 км, 100—122-мм — 20 км, 152—155-мм — 22—30 км, 175—210-мм — более 35 км. Масса в боевом положении наземных буксируемых пушек: 76—85-мм — 1—2 т, 100—122-мм — 3,5—7 т, 152—155-мм — 8—12 т. Боевая масса самоходных пушек: 90—105-мм — 15—20 т, 155—175-мм — 27—45 т. В современных противотанковой, танковой, зенитной, авиационной, корабельной, береговой артиллерии применяются только пушки. Буксируемые и самодвижущиеся пушки.

Пермь ; 1950-е ; 152-мм полевые пушки обр. Австро-Венгрия: 75-мм 7,5-см горная пушка обр. Великобритания: 83,8-мм 18-фунтовая полевая пушка обр. Германия: 75-мм пушка обр. Италия: 65-мм горная пушка до 1918 ; 75-мм пушка Депора обр.

Франция: 37-мм пехотная пушка обр. Япония: 75-мм пушки «90» 1932 и «91», горно-вьючная пушка «34»; 105-мм пушка «38» 1911 , «14» 1925 и «92» 1935 ; 150-мм пушка «89» 1935. III; 75-мм орудия Stuk-37 и Stuk-40; 1937. Пушки большой дальности и мощности. Создание пушек большой дальности и большой мощности имело целью борьбы с объектами противника в его глубоком тылу и разрушения мощных оборонительных сооружений.

Опыт применения таких артиллерийских систем неоднозначен. При значительных затратах на строительство и боевую эксплуатацию их эффективность оказалась меньше ожидаемой. Однако нельзя отрицать большой психологический эффект оказываемый такими пушками на противника. С развитием ракетных технологий и появлением компактных ядерных боеприпасов интерес к пушкам большой дальности и мощности снизился. Пушка была разработана фирмой «Крупп» в 1914.

Она имела ствол длиной 150 калибров. Масса метательного заряда достигала 196,5 кг. При этом с момента вылета из ствола по его падения проходило до трех минут. После 50 выстрелов ствол рассверливали до 24 см, после чего для стрельбы использовали снаряды более крупного калибра. Орудие, имевшее массу 750 т, перевозилось по железной дороге.

На позиции «Колоссаль» устанавливалась на специально оборудованной бетонной площадке с кольцевым рельсом, который обеспечивал наводку по азимуту. Три такие пушки использовались немцами для обстрела Парижа. Впервые Париж подвергся артиллерийскому обстрелу 23 марта 1917. Несмотря на то, что одна пушка была вскоре выведена французами из строя, за 44 дня обстрелов было выпущено 303 снаряда, из которых 183 упали в черте города. В 1918 немцы вывезли орудия в Германию и демонтировали их.

В 1937—1940 специалистами фирмы «Крупп» были построены две 21-см артиллерийские железнодорожные установки K12 Е , имевшие длину ствола 159 калибров и общую массу 302 т. Для наводки по азимуту конструировалась специальная искривленная железнодорожная ветка. С 1940 пушки вели обстрел Великобритании. Пушка была также разработана фирмой «Крупп». Максимальная дальность стрельбы осколочным снарядом массой 255,5 кг достигала 62,2 км.

Для увеличении дальности стрельбы до 87 км были разработаны активно-реактивные снаряды «Ракетен-Гранат 4341» Raketen-Granate 4341 массой 245 кг и длиной 1220 мм. Для придания орудию кругового обстрела установка заводилась на поворотную платформу длиной около 30 м. Платформа вращалась на катках по круговым рельсам. Для одного орудия со средствами обеспечения требовались два железнодорожных состава. Кроме транспортера с орудием и элементов поворотной платформы, в состав поездов входили два вагона — снарядных погреба вместимостью по 113 снарядов, два вагона — зарядных погреба, вагон — центральный пост, вагон-электростанция, вагон — компрессорная станция, вагоны для личного состава, вагон-кухня, вагон с горюче-смазочными материалами, вагоны с 20-мм зенитными пушками и др.

Всего с 1939 по 1943 были построены 17 пушек. В конце Второй мировой войны была создана модель пушки с рассверленным до 310 мм стволом, предназначенная для стрельбы специальными стреловидными оперенными снарядами калибра 12 см с отделяемым поддоном. Боевая масса орудия «Дора» названа в честь жены главного конструктора достигала 1350 т, длина ствола 40 калибров. Скорострельность — 3 выстрела в час. Она устанавливалась на железнодорожную платформу.

Люлька под ствол монтировалась между двумя опорами, каждая из которых занимала одну железнодорожную колею и размещалась на четырех пятиосных платформах. Время подготовки орудия к стрельбе складывалось из времени оборудования огневой позиции от трех до шести недель и времени сборки установки до трех суток. Для оборудования огневой позиции требовался участок длиной 4120—4370 м и 250 человек. Для наведения в горизонтальной плоскости железнодорожные пути были изогнуты. Первоначально «Дора» разрабатывалась для борьбы с укреплениями французской линии Мажино.

Однако к моменту постройки пушки Франция была уже оккупирована. С июня 1942 «Дора» участвовала в обстреле Севастополя. С 5 по 17 июня по городу было выпущено 48 снарядов. К этому времени ствол пушки выработал свой ресурс и орудие было выведено в тыл. После ремонта немцы планировали использовать пушку для обстрела Ленинграда, но не успели.

В сентябре-октябре 1944 пушка использовалась для подавления Варшавского восстания. По городу было выпущено около 30 снарядов. Она была готова к марту 1943. СМ-33, разработанная к 1954, стала самой дальнобойной пушкой в истории из когда-либо испытанных. Она могла стрелять снарядами массой 231—467 кг на дальность 127—53 км, соответственно.

Пушка предназначалась в первую очередь для нанесения артиллерийских ядерных ударов. Однако бурное развитие ракетной техники повлияло на решение о прекращении работ над этим проектом. Пушка так и не была принята на вооружение. Скорострельность — 1 выстрел в 4 минуты. Пушка приняла активное участие в обороне Ленинграда.

Всего с августа 1941 по 10 июня 1944 из пушки сделали 81 выстрел. СМ-54 была создана в 1957 и предназначалась для стрельбы ядерными боеприпасами. Масса установки — 64 т, масса снаряда — 570 кг, максимальная дальность стрельбы — 25,6 км. Было построено 4 САУ. Предназначена для ведения настильной и навесной стрельбы.

По сравнению с пушкой пушка-гаубица имеет несколько меньшую длину ствола, большие углы возвышения ствола и падения снарядов. По сравнению с гаубицей у пушки-гаубицы большая дальность стрельбы. Пушки-гаубицы входят в состав войсковой полевой артиллерии. Калибр современных пушек-гаубиц 152—155-мм, масса снарядов 43—46 кг, максимальная дальность стрельбы 17—25 км. Буксируемые и самодвижущиеся пушки-гаубицы.

Великобритания: 87,6-мм 25-фунтовая пушка-гаубица MkII 1940 ; 105-мм пушки-гаубицы L-118 «Ройял орднанс»; 30 калибров; 1965 и L-119 «Ройял орднанс»; 1980-е. Израиль: 155-мм пушка-гаубица M-71 39 калибров; «Солтам»; 1980 , самодвижущиеся пушки-гаубицы «Модель 839P» 39 калибров; «Солтам»; 1980 и «Модель 845P» 45 калибров; «Солтам»; 1994. Сингапур: 155-мм пушка-гаубица FH-88 39 калибров; «Орднанс дивелопмент энд энджиниринг»; 1983. США: 105-мм пушка-гаубица M119 лицензионная британская L-119. Франция: 105-мм пушка-гаубица обр.

ЮАР: 155-мм пушка-гаубица G-5 45 калибров; «Армскор»; 1982. Самоходные пушки-гаубицы. Израиль: 155-мм M-72 «Солтам»; на шасси британского среднего танка «Центурион»; пушка-гаубица M-71; 1970-е , «Рэскел» «Солтам»; на гусеничном ходу; пушка-гаубица длиной 39 или 52 калибра; начало 1990-х и «Сламмер» «Солтам»; на шасси ОБТ «Меркава»; пушка-гаубица длиной 45 калибров; начало 1990-х. Франция: 155-мм «Цезарь» «Жиат»; на шасси трехосного грузового автомобиля; пушка-гаубица длиной 52 калибра; начало 1990-х.

Анатомия пушки

– вид артиллерии, вооруженный артиллерийскими орудиями и установками на самоходной базе (боевые машины артиллерии). + 152-мм пушка-гаубица Д-20. Руководство службы. станок, на котором закрепляется ствол артиллерийского орудия. Предназначен для придания стволу вертикальных и горизонтальных углов (с помощью механизмов наводки), поглощения энергии отдачи прн выстреле (противооткатными устройствами). Лафет-специальное приспособление, опора (станок), на котором закрепляется ствол орудия с затвором.

Ответы на кроссворд дня № 21927 из "Одноклассников"

Пробив борт корабля, они разрывав внутри его, сокрушая все вокруг и вызывая пожары. Через 15-20 мин после начала русской канонады в Синопском сражении большинство турецких кораблей уже пылали. Бомбическое орудие Обыкновенные турецкие пушки того времени стреляли сплошными ядрами, не причинявшими противнику особого вреда. Так, например, в 1827 г. Это не помешало его командиру капитану 1 ранга М. Лазареву потопить турецкий флагманский корабль, 3 фрегата, корвет и заставить выброситься на берег неприятельский 80-пушечный корабль.

Бомбические орудия очень скоро вытеснили пушки, стрелявшие сплошными чугунными ядрами. К середине XIX в. По наружному виду пушки различаются в зависимости от того, на каком заводе и в какое время они отливались. Пушки более раннего периода имели украшения в виде фризов, поясов, украшенных затейливым литьем. Пушки более позднего изготовления не имели этих украшений.

Калибр орудий к середине XIX в. Ориентировочные размеры калибров некоторых орудий в метрической системе мер следующие: 3-фунтовые-61-мм, 6-фунтовые-95-мм, 8-фунтовые-104-мм, 12-фунтовые-110-мм, 16-фунтовые- 118-мм, 18-фунтовые-136-мм, 24-фунтовые- 150-мм, 30-фунтовые-164-мм, 36-фунтовые-172-мм, 68-фунтовые-214-мм.. Карронады делались 12-, 18-, 24-, 32-, 36-, 68- и 96-фунтовыми. Орудийные порты - это почти квадратные отверстия, вырезанные в бортах корабля рис. Делались порты в носовой и кормовой частях корабля.

В носовой части это так называемые порты погонных орудий, в кормовой - для орудий, используемых при защите от преследующего противника. В них ставили обыкновенно орудия, снятые с ближайших бортовых портов, размещенные на том же деке. Пушечные порты двухдечного линейного корабля конца XVIII; 1-гондек-порты; 2 - опердек-порты; 3 - шканечные полупорты: 4-грот-руслень 5 - нижние юферсы; 6 - вант-путенсы; 7 - бархоуты; 8 - бортовой трап Крышки орудийных портов, которые наглухо закрывали их, изготовляли из толстых досок, обшитых поперечными, более тонкими досками рис. Крышки орудийных портов; 1-крышка порта; 2-украшение крышек портов инкрустацией; 3 - способ открывания и закрывания крышек портов. Сверху крышки подвешивали на шарнирах.

Открывали их изнутри, при помощи тросов, концы которых были заделаны в рымах на верхней стороне крышки, а закрывали с помощью другого троса, прикрепленного к рыму на внутренней стороне крышки. На верхней палубе в фальшборте орудийные порты делали без крышек и называли полупортами. В петровские времена внешнюю сторону крышек портов часто украшали инкрустацией в виде золоченого венка, вырезанного из дерева. Размеры портов и расстояние между ними зависели от диаметра ядра. Так, ширина и высота портов составляли соответственного 6,5 и 6 диаметров ядра, а расстояние между осями портов - примерно 20-25 диаметров ядра.

Расстояния между портами диктовали нижние самые крупнокалиберные орудия, а остальные порты прорезались в шахматном порядке. Расстояние между всеми нижними портами, плюс расстояние от крайних портов к носу и корме определяло длину батарейной палубы, а последняя - длину корабля и соответственно все остальные его размеры. Теперь от истории и теории, для наглядности перейдем к примерам и фотографиям различных орудий, а так как можно выделить две основные схемы установки талей орудий — английскую и французскую, сначала Англия: 36-фунтовая 173мм русская опытная пушка образца 1786 года с подъёмным винтом для изменения угла возвышения ствола орудия на корабельном откидном станке. Гладкоствольная 36-фунтовая 173 мм пушка, так называемое орудие новой конструкции 1838 года, ствол которого отливался без фризов и поясов. Это были орудия установленные на английский манер.

Теперь Франция: Последняя картинка неплохой пример, установки именно на модели.

С учетом противодронной сетки — все четыре. Поэтому чтобы спрятать такую махину, нужно обустроить капонир по площади, сопоставимый с двухэтажной квартирой-студией. Орудие всегда маскируют тщательно. Ведь такой калибр для ВСУ — лакомая цель. Сейчас основная головная боль — это так называемая «Баба-Яга». Тяжелый дрон, который может нести на себе несколько мин.

Против дронов помогает не только специальный «обвес» на башне «Мсты», но и Чахотка. Собака прибилась к артиллеристам пару месяцев назад.

Непременным атрибутом ее таинственности был и широкий брезентовый чехол, который полностью скрывал ствол и башню, не позволяя даже предположить, что это за система. Наиболее «просвещенные» утверждали, что НОНА а именно так она прописывалась в технической документации способна вести огонь как минами, так и снарядами. И здесь они были недалеки от истины, как и в расшифровке аббревиатуры: новейшее оружие наземной артиллерии, а не имя жены главного конструктора. А вот слово «наземная» явно должно было сбить с толку вражеские разведки: эта самоходка изначально предназначалась для десантных войск.

Впервые широкой публике самоходку продемонстрировали 9 мая 1985 года на параде на Красной площади в честь 40-летия Великой Победы последнем, кстати, в Советском Союзе. Тогда с «Ноны-С» даже сняли чехол, поразив воображение многих, в том числе и зарубежных военных атташе. И это после того, как 2С9 уже четыре года успешно применялась в Афганистане, где во множестве присутствовали и американские военные советники, но — проглядели. Специализированные западные военные издания посвятили тогда «советскому 120-миллиметровому миномету-гаубице» отдельные статьи. Их авторы, разглядев предназначение для десантирования, обозначали новое орудие не иначе как «мощный удар по тыловым районам НАТО». Зарубежные специалисты в чем-то переоценили «Нону-С», приписав ей более высокую скорострельность и приборное оснащение.

А вот дальность стрельбы и возможность использования орудия как гаубицы они тогда не разглядели. Как и не догадались о том, что калибр 120 миллиметров был выбран неслучайно: «Нона-С» могла использовать и боеприпасы аналогичного калибра, стоящие на вооружении армий НАТО. Но в целом верно поняли ее предназначение для ВДВ. Самоходка 2С9 «Нона-С» и сегодня считается уникальной артиллерийской системой, которая создавалась специально для непосредственной огневой поддержки подразделений Воздушно-десантных войск на поле боя. Необходимость в такой машине возникла, когда появились планы по использованию десанта на неприятельской территории. При этом большая роль отводилась авиадесантным самоходным артиллерийским установкам.

Время загрузки данной страницы 0.

Похожие новости:

Оцените статью
Добавить комментарий